Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Символьное решение систем уравнений





 

Функция

Solve, x1, х2...х3

позволяет найти значение перечисленных переменных, при которых содержащее их выражение становится равным нулю. Для решения системы уравнений в шаблон функции solve вставляется вектор, длина которого равна количеству уравнений в системе. Уравнения записываются в вектор.

На рис. 68 приведен пример применения функции solve для решения систем уравнений.

 

Рис.68. Пример применения функции solve для решения систем уравнений.

Оборудование, инструменты и приборы

ПЭВМ, система MathCad

Варианты заданий

Варианты заданий приведены в таблицах 4.12 -4.15.

Задание 1

Решить уравнение согласно заданию своего варианта. Найти все корни уравнения. Точность решения 0.0001. Варианты заданий приведены в табл.4.12.

 

Таблица 4.12

Варианты заданий

 

№ вар Задание № вар Задание № вар Задание
  1/2*x2+3*cos(x)– 5=0     2*x2+ln(2*x–x2) =0
    ln(2*x–x3)+2=0   4*x2–5*x-1–2=0
  sin(x)–5*x3+1=0     x3–8*x2+1.5=0
  |x|–3*x2+1=0   4*|sin(x)|+x2–4=0   4*cos(x)+x2–4=0
    7*|sin(x)|–x–5=0   1/2*x3+3*cos(x)+2=0
  1/2*x+3*cos(x)+2=0   2*x5 –8*x2+0.8=0   8*x3+5*x2–17*x-1=0
  8*x2+5*x-1–17=0   5*x2+3*cos(x)–4=0   8*x3+ ln(x2) =0
  5*x3–6*x+0.2=0   3–7*cos2(x)*sin(x)– –3* sin3(x)=0   ln(7*x)–x-1=0
  5*x4–6*x2+0.5=0   8*sin(2x)– 3*cos2(x)–4=0   1/4*x4–3*cos(x)+2=0
  5*x3–6*x2+3=0   x2+ sin(x)–5*x3=0   2*x4+x3–3*sin(x)=0

 

Задание 2

Решить уравнение полиномиального вида, заданного функцией F(x): = A0+A1*x+A2*x2+A3*x3. Значения коэффициентов взять в соответствии со своим вариантом. Варианты заданий приведены в табл.4.13.


Таблица 4.13

Варианты заданий

№ вар. Значения коэффициентов
А0 А1 А2 А3
  -5      
         
  -55      
    -8 -10  
  -3 -11    
  -5   -9  
  -52   -6  
    -33    
         
  -4      
  -12      
  -7      
         
         
      -11  
         
  -7   -9  
  -3      
         
         
         
         
      -12  
      -2  
    -5   -11
      -2  
      -5  
  -4      
  -6   -2  
        -9

 

 


Задание 3

Решить систему линейных алгебраических уравнений матричным методом. Варианты заданий приведены в табл. 4.14.

Таблица 4.14

Варианты заданий

 

№ вар Задание № вар Задание № вар Задание
           
  5x1+3x2-4x3+x4=8 -3x1+8x2-4x3-2x4=-5 x1-12x2+2x3-2x4=-3 -3x1+7x2+x3-4x4=-6   0.5x+0, 5x2-4x3+x4=8.5 3x1-8x2-4x3-x4=-12 6x1-7x2+2x3-2x4=-5 -3x1+7x2+5x3-4x4=11   -x1+2x2+2x3+8x4=10 -9x1+x2+3x3-7x4=0 11x1+5x2-2x3+5x4=7 x1+3x2+5x3-6x4=4
  9x1+5x2-4x3+x4=6 -x1+6x2-3x3-5x4=-2 x1-2x2+2x3-2x4=-3 -5x1+3x2+x3-x4=-1   2x1-6x3+x4=3 11x1+8x2-x3-2x4=16 x1-2x2+2x3-4x4=0 -4x1+x3-4x4=-10   -4x1-5x2+4x3-5x4=-11 x1-x2-2x3+8x4=7 -4x1+7x2-4x3-4x4=9 9x1+4x2-2x3-12x4=3
  -5x1+4x2-4x3-x4=-4 -x1+6x2-3x3-5x4=-2 x1-3x2+5x3+6x4=7 -4x1+x2+x3-4x4=-2   15x1+13x2-4x3+x4=20 5x1+8x2-4x3=5 3x1-x2+3x3-2x4=-3 -x1+4x2+x3-4x4=0   -10x1-9x2+x3+2x4=-2 4x1+5x2+4x3+12x4=6 -8x1-2x2-x3+9x4=15 4x1-3x2-3x3-2x4=-3
  x1+8x+4x3-2x4=7 7x1-x2+x3-9x4=10 6x1-3x2+x3+12x4=4 11x1-9x2-5x3+6x4=0   10x1+4x3+x4=18 9x1+8x2-4x3-11x4=0 x1-12x2+2x3-2x4=-5 x1+7x2+x3-x4=6   -2x1-6x2+5x3+9x4=-9 6x1+8x2-4x3-2x4=-5 -3x1-4x2-8x3+7x4=13 x1+2x2-7x3+9x4=-4
  -2x1+2x2-9x3+5x4=6 x1-2x2+10x3-7x4=-4 -11x1+x2+9x3-2x4=1 3x1+7x2-x3-x4=3   4x1+x2-4x3+x4=8 -3x1+8x2-4x3-2x4=-5 x1+4x2+2x3-2x4=7 -1.5x1+3x2+x3-4x4=-6   -8x1+2x2+x3-x4=0 x1+10x2-6x3+x4=-10 5x1-2x2+9x3-4x4=-8 -7x1-7x2-5x3+3x4=2
  -x1-5x2-6x3+7x4=0 3x1-7x2-2x3-2x4=-2 2x1+10x2+4x3+2x4=5 -13x1-x2-8x3-3x4=-1   5x1+3x2-4x3+x4=8 x1+x2-4x3-5x4=3 5x1-2x2+4x3-2x4=-3 -x1+7x2-4x4=0   -8x1+2x2+x3-x4=0 x1+10x2-6x3+x4=-10 5x1-2x2+9x3-4x4=-8 -7x1-7x2-5x3+3x4=2
  -5x1+3x2-x3+5x4=-2 7x1-6x2-7x3+x4=3 x1+x2-11x3-5x4=9 5x1-14x2+4x3-6x4=7   5x1+3x2-4x3+x4=8 -3x1+6x2-4x3=-7 x1-9x2+2x3+4x4=0 3x1-2x2+2x3-2x4=-7   6x1-4x2+3x3+5x4=-2 -4x1+7x2-5x3-4x4=-4 2x1-2x2+6x3-72x4=-4 -2x1+7x2+x3-5x4=-3

 

 


Окончание табл. 4.14

           
  10x1+6x2-8x3+2x4=4 6x1-4x2+8x3+4x4=10 -2x1+6x2-4x3+4x4=6 6x1-15x2-2x3+8x4=3   7x1-6x2-7x3+x4=3 x1-6x2+2x3-2x4=-1 -3x1+7x2+x3-4x4=-6 2x1+10x2+4x3+2x4=5   1+2x2-9x3+2x4=0 6x1+9x2-5x3-x4=-3 3x1-4х2+x3-7x4=-5 2x1+7x2+2x3-3x4=-6
  2.5x1+3x2-4x3+x4=0 -3x1+8x2-2x4=-3 3x1-2x2+2x3-2x4=-7 -3x1+7x2+x3-4x4=-2   -3x2-x3+x4=-3 -x1+5x2+2x3-2x4=-5 x1-2x2+6x3-2x4=2 -3x1+x2+x3-4x4=-8   5x1+2x2-x3+3x4=7 -7x1+6x2-5x3-7x4=-5 x1-12x2+2x3-2x4=-3 -4x1+7x2+x3-7x4=-6
  x1+3x2+4x3+x4=8 -3x1+2x2-4x3-2x4=-5 x1-6x2+2x3-2x4=-1 -3x1+7x2+x3+4x4=12   x1+3x2+2x3+x4=4 -3x1+x2-4x3-2x4=-5 x1-5x2+2x3+3x4=9 -3x1+4x2+x3-7x4=-5   1. 4x1+x2-6x3+x4=5 4x1+8x2-2x3-3x4=-5 -x1-12x2+3x3-2x4=-3 -5x1+7x2+3x3-3x4=-6

 

 

Задание 4

Решить систему линейных алгебраических уравнений из предыдущего задания при помощи функции lsolve.

 

Задание 5

Решить систему уравнений двумя способами (с использованием функции find и с использованием стандартной функции minerr. Варианты заданий приведены в табл.4.15.

Таблица 4.15

Варианты заданий

№ вар Задание № вар Задание № вар Задание
           
     
     
     
     

Окончание табл. 4.15

 

           
     
     
     
     
     
     






Дата добавления: 2014-11-12; просмотров: 1210. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Studopedia.info - Студопедия - 2014-2026 год . (0.015 сек.) русская версия | украинская версия