Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Символьное решение систем уравнений





 

Функция

Solve, x1, х2...х3

позволяет найти значение перечисленных переменных, при которых содержащее их выражение становится равным нулю. Для решения системы уравнений в шаблон функции solve вставляется вектор, длина которого равна количеству уравнений в системе. Уравнения записываются в вектор.

На рис. 68 приведен пример применения функции solve для решения систем уравнений.

 

Рис.68. Пример применения функции solve для решения систем уравнений.

Оборудование, инструменты и приборы

ПЭВМ, система MathCad

Варианты заданий

Варианты заданий приведены в таблицах 4.12 -4.15.

Задание 1

Решить уравнение согласно заданию своего варианта. Найти все корни уравнения. Точность решения 0.0001. Варианты заданий приведены в табл.4.12.

 

Таблица 4.12

Варианты заданий

 

№ вар Задание № вар Задание № вар Задание
  1/2*x2+3*cos(x)– 5=0     2*x2+ln(2*x–x2) =0
    ln(2*x–x3)+2=0   4*x2–5*x-1–2=0
  sin(x)–5*x3+1=0     x3–8*x2+1.5=0
  |x|–3*x2+1=0   4*|sin(x)|+x2–4=0   4*cos(x)+x2–4=0
    7*|sin(x)|–x–5=0   1/2*x3+3*cos(x)+2=0
  1/2*x+3*cos(x)+2=0   2*x5 –8*x2+0.8=0   8*x3+5*x2–17*x-1=0
  8*x2+5*x-1–17=0   5*x2+3*cos(x)–4=0   8*x3+ ln(x2) =0
  5*x3–6*x+0.2=0   3–7*cos2(x)*sin(x)– –3* sin3(x)=0   ln(7*x)–x-1=0
  5*x4–6*x2+0.5=0   8*sin(2x)– 3*cos2(x)–4=0   1/4*x4–3*cos(x)+2=0
  5*x3–6*x2+3=0   x2+ sin(x)–5*x3=0   2*x4+x3–3*sin(x)=0

 

Задание 2

Решить уравнение полиномиального вида, заданного функцией F(x): = A0+A1*x+A2*x2+A3*x3. Значения коэффициентов взять в соответствии со своим вариантом. Варианты заданий приведены в табл.4.13.


Таблица 4.13

Варианты заданий

№ вар. Значения коэффициентов
А0 А1 А2 А3
  -5      
         
  -55      
    -8 -10  
  -3 -11    
  -5   -9  
  -52   -6  
    -33    
         
  -4      
  -12      
  -7      
         
         
      -11  
         
  -7   -9  
  -3      
         
         
         
         
      -12  
      -2  
    -5   -11
      -2  
      -5  
  -4      
  -6   -2  
        -9

 

 


Задание 3

Решить систему линейных алгебраических уравнений матричным методом. Варианты заданий приведены в табл. 4.14.

Таблица 4.14

Варианты заданий

 

№ вар Задание № вар Задание № вар Задание
           
  5x1+3x2-4x3+x4=8 -3x1+8x2-4x3-2x4=-5 x1-12x2+2x3-2x4=-3 -3x1+7x2+x3-4x4=-6   0.5x+0, 5x2-4x3+x4=8.5 3x1-8x2-4x3-x4=-12 6x1-7x2+2x3-2x4=-5 -3x1+7x2+5x3-4x4=11   -x1+2x2+2x3+8x4=10 -9x1+x2+3x3-7x4=0 11x1+5x2-2x3+5x4=7 x1+3x2+5x3-6x4=4
  9x1+5x2-4x3+x4=6 -x1+6x2-3x3-5x4=-2 x1-2x2+2x3-2x4=-3 -5x1+3x2+x3-x4=-1   2x1-6x3+x4=3 11x1+8x2-x3-2x4=16 x1-2x2+2x3-4x4=0 -4x1+x3-4x4=-10   -4x1-5x2+4x3-5x4=-11 x1-x2-2x3+8x4=7 -4x1+7x2-4x3-4x4=9 9x1+4x2-2x3-12x4=3
  -5x1+4x2-4x3-x4=-4 -x1+6x2-3x3-5x4=-2 x1-3x2+5x3+6x4=7 -4x1+x2+x3-4x4=-2   15x1+13x2-4x3+x4=20 5x1+8x2-4x3=5 3x1-x2+3x3-2x4=-3 -x1+4x2+x3-4x4=0   -10x1-9x2+x3+2x4=-2 4x1+5x2+4x3+12x4=6 -8x1-2x2-x3+9x4=15 4x1-3x2-3x3-2x4=-3
  x1+8x+4x3-2x4=7 7x1-x2+x3-9x4=10 6x1-3x2+x3+12x4=4 11x1-9x2-5x3+6x4=0   10x1+4x3+x4=18 9x1+8x2-4x3-11x4=0 x1-12x2+2x3-2x4=-5 x1+7x2+x3-x4=6   -2x1-6x2+5x3+9x4=-9 6x1+8x2-4x3-2x4=-5 -3x1-4x2-8x3+7x4=13 x1+2x2-7x3+9x4=-4
  -2x1+2x2-9x3+5x4=6 x1-2x2+10x3-7x4=-4 -11x1+x2+9x3-2x4=1 3x1+7x2-x3-x4=3   4x1+x2-4x3+x4=8 -3x1+8x2-4x3-2x4=-5 x1+4x2+2x3-2x4=7 -1.5x1+3x2+x3-4x4=-6   -8x1+2x2+x3-x4=0 x1+10x2-6x3+x4=-10 5x1-2x2+9x3-4x4=-8 -7x1-7x2-5x3+3x4=2
  -x1-5x2-6x3+7x4=0 3x1-7x2-2x3-2x4=-2 2x1+10x2+4x3+2x4=5 -13x1-x2-8x3-3x4=-1   5x1+3x2-4x3+x4=8 x1+x2-4x3-5x4=3 5x1-2x2+4x3-2x4=-3 -x1+7x2-4x4=0   -8x1+2x2+x3-x4=0 x1+10x2-6x3+x4=-10 5x1-2x2+9x3-4x4=-8 -7x1-7x2-5x3+3x4=2
  -5x1+3x2-x3+5x4=-2 7x1-6x2-7x3+x4=3 x1+x2-11x3-5x4=9 5x1-14x2+4x3-6x4=7   5x1+3x2-4x3+x4=8 -3x1+6x2-4x3=-7 x1-9x2+2x3+4x4=0 3x1-2x2+2x3-2x4=-7   6x1-4x2+3x3+5x4=-2 -4x1+7x2-5x3-4x4=-4 2x1-2x2+6x3-72x4=-4 -2x1+7x2+x3-5x4=-3

 

 


Окончание табл. 4.14

           
  10x1+6x2-8x3+2x4=4 6x1-4x2+8x3+4x4=10 -2x1+6x2-4x3+4x4=6 6x1-15x2-2x3+8x4=3   7x1-6x2-7x3+x4=3 x1-6x2+2x3-2x4=-1 -3x1+7x2+x3-4x4=-6 2x1+10x2+4x3+2x4=5   1+2x2-9x3+2x4=0 6x1+9x2-5x3-x4=-3 3x1-4х2+x3-7x4=-5 2x1+7x2+2x3-3x4=-6
  2.5x1+3x2-4x3+x4=0 -3x1+8x2-2x4=-3 3x1-2x2+2x3-2x4=-7 -3x1+7x2+x3-4x4=-2   -3x2-x3+x4=-3 -x1+5x2+2x3-2x4=-5 x1-2x2+6x3-2x4=2 -3x1+x2+x3-4x4=-8   5x1+2x2-x3+3x4=7 -7x1+6x2-5x3-7x4=-5 x1-12x2+2x3-2x4=-3 -4x1+7x2+x3-7x4=-6
  x1+3x2+4x3+x4=8 -3x1+2x2-4x3-2x4=-5 x1-6x2+2x3-2x4=-1 -3x1+7x2+x3+4x4=12   x1+3x2+2x3+x4=4 -3x1+x2-4x3-2x4=-5 x1-5x2+2x3+3x4=9 -3x1+4x2+x3-7x4=-5   1. 4x1+x2-6x3+x4=5 4x1+8x2-2x3-3x4=-5 -x1-12x2+3x3-2x4=-3 -5x1+7x2+3x3-3x4=-6

 

 

Задание 4

Решить систему линейных алгебраических уравнений из предыдущего задания при помощи функции lsolve.

 

Задание 5

Решить систему уравнений двумя способами (с использованием функции find и с использованием стандартной функции minerr. Варианты заданий приведены в табл.4.15.

Таблица 4.15

Варианты заданий

№ вар Задание № вар Задание № вар Задание
           
     
     
     
     

Окончание табл. 4.15

 

           
     
     
     
     
     
     






Дата добавления: 2014-11-12; просмотров: 1210. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Studopedia.info - Студопедия - 2014-2025 год . (0.069 сек.) русская версия | украинская версия