Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Символьное решение систем уравнений





 

Функция

Solve, x1, х2...х3

позволяет найти значение перечисленных переменных, при которых содержащее их выражение становится равным нулю. Для решения системы уравнений в шаблон функции solve вставляется вектор, длина которого равна количеству уравнений в системе. Уравнения записываются в вектор.

На рис. 68 приведен пример применения функции solve для решения систем уравнений.

 

Рис.68. Пример применения функции solve для решения систем уравнений.

Оборудование, инструменты и приборы

ПЭВМ, система MathCad

Варианты заданий

Варианты заданий приведены в таблицах 4.12 -4.15.

Задание 1

Решить уравнение согласно заданию своего варианта. Найти все корни уравнения. Точность решения 0.0001. Варианты заданий приведены в табл.4.12.

 

Таблица 4.12

Варианты заданий

 

№ вар Задание № вар Задание № вар Задание
  1/2*x2+3*cos(x)– 5=0     2*x2+ln(2*x–x2) =0
    ln(2*x–x3)+2=0   4*x2–5*x-1–2=0
  sin(x)–5*x3+1=0     x3–8*x2+1.5=0
  |x|–3*x2+1=0   4*|sin(x)|+x2–4=0   4*cos(x)+x2–4=0
    7*|sin(x)|–x–5=0   1/2*x3+3*cos(x)+2=0
  1/2*x+3*cos(x)+2=0   2*x5 –8*x2+0.8=0   8*x3+5*x2–17*x-1=0
  8*x2+5*x-1–17=0   5*x2+3*cos(x)–4=0   8*x3+ ln(x2) =0
  5*x3–6*x+0.2=0   3–7*cos2(x)*sin(x)– –3* sin3(x)=0   ln(7*x)–x-1=0
  5*x4–6*x2+0.5=0   8*sin(2x)– 3*cos2(x)–4=0   1/4*x4–3*cos(x)+2=0
  5*x3–6*x2+3=0   x2+ sin(x)–5*x3=0   2*x4+x3–3*sin(x)=0

 

Задание 2

Решить уравнение полиномиального вида, заданного функцией F(x): = A0+A1*x+A2*x2+A3*x3. Значения коэффициентов взять в соответствии со своим вариантом. Варианты заданий приведены в табл.4.13.


Таблица 4.13

Варианты заданий

№ вар. Значения коэффициентов
А0 А1 А2 А3
  -5      
         
  -55      
    -8 -10  
  -3 -11    
  -5   -9  
  -52   -6  
    -33    
         
  -4      
  -12      
  -7      
         
         
      -11  
         
  -7   -9  
  -3      
         
         
         
         
      -12  
      -2  
    -5   -11
      -2  
      -5  
  -4      
  -6   -2  
        -9

 

 


Задание 3

Решить систему линейных алгебраических уравнений матричным методом. Варианты заданий приведены в табл. 4.14.

Таблица 4.14

Варианты заданий

 

№ вар Задание № вар Задание № вар Задание
           
  5x1+3x2-4x3+x4=8 -3x1+8x2-4x3-2x4=-5 x1-12x2+2x3-2x4=-3 -3x1+7x2+x3-4x4=-6   0.5x+0, 5x2-4x3+x4=8.5 3x1-8x2-4x3-x4=-12 6x1-7x2+2x3-2x4=-5 -3x1+7x2+5x3-4x4=11   -x1+2x2+2x3+8x4=10 -9x1+x2+3x3-7x4=0 11x1+5x2-2x3+5x4=7 x1+3x2+5x3-6x4=4
  9x1+5x2-4x3+x4=6 -x1+6x2-3x3-5x4=-2 x1-2x2+2x3-2x4=-3 -5x1+3x2+x3-x4=-1   2x1-6x3+x4=3 11x1+8x2-x3-2x4=16 x1-2x2+2x3-4x4=0 -4x1+x3-4x4=-10   -4x1-5x2+4x3-5x4=-11 x1-x2-2x3+8x4=7 -4x1+7x2-4x3-4x4=9 9x1+4x2-2x3-12x4=3
  -5x1+4x2-4x3-x4=-4 -x1+6x2-3x3-5x4=-2 x1-3x2+5x3+6x4=7 -4x1+x2+x3-4x4=-2   15x1+13x2-4x3+x4=20 5x1+8x2-4x3=5 3x1-x2+3x3-2x4=-3 -x1+4x2+x3-4x4=0   -10x1-9x2+x3+2x4=-2 4x1+5x2+4x3+12x4=6 -8x1-2x2-x3+9x4=15 4x1-3x2-3x3-2x4=-3
  x1+8x+4x3-2x4=7 7x1-x2+x3-9x4=10 6x1-3x2+x3+12x4=4 11x1-9x2-5x3+6x4=0   10x1+4x3+x4=18 9x1+8x2-4x3-11x4=0 x1-12x2+2x3-2x4=-5 x1+7x2+x3-x4=6   -2x1-6x2+5x3+9x4=-9 6x1+8x2-4x3-2x4=-5 -3x1-4x2-8x3+7x4=13 x1+2x2-7x3+9x4=-4
  -2x1+2x2-9x3+5x4=6 x1-2x2+10x3-7x4=-4 -11x1+x2+9x3-2x4=1 3x1+7x2-x3-x4=3   4x1+x2-4x3+x4=8 -3x1+8x2-4x3-2x4=-5 x1+4x2+2x3-2x4=7 -1.5x1+3x2+x3-4x4=-6   -8x1+2x2+x3-x4=0 x1+10x2-6x3+x4=-10 5x1-2x2+9x3-4x4=-8 -7x1-7x2-5x3+3x4=2
  -x1-5x2-6x3+7x4=0 3x1-7x2-2x3-2x4=-2 2x1+10x2+4x3+2x4=5 -13x1-x2-8x3-3x4=-1   5x1+3x2-4x3+x4=8 x1+x2-4x3-5x4=3 5x1-2x2+4x3-2x4=-3 -x1+7x2-4x4=0   -8x1+2x2+x3-x4=0 x1+10x2-6x3+x4=-10 5x1-2x2+9x3-4x4=-8 -7x1-7x2-5x3+3x4=2
  -5x1+3x2-x3+5x4=-2 7x1-6x2-7x3+x4=3 x1+x2-11x3-5x4=9 5x1-14x2+4x3-6x4=7   5x1+3x2-4x3+x4=8 -3x1+6x2-4x3=-7 x1-9x2+2x3+4x4=0 3x1-2x2+2x3-2x4=-7   6x1-4x2+3x3+5x4=-2 -4x1+7x2-5x3-4x4=-4 2x1-2x2+6x3-72x4=-4 -2x1+7x2+x3-5x4=-3

 

 


Окончание табл. 4.14

           
  10x1+6x2-8x3+2x4=4 6x1-4x2+8x3+4x4=10 -2x1+6x2-4x3+4x4=6 6x1-15x2-2x3+8x4=3   7x1-6x2-7x3+x4=3 x1-6x2+2x3-2x4=-1 -3x1+7x2+x3-4x4=-6 2x1+10x2+4x3+2x4=5   1+2x2-9x3+2x4=0 6x1+9x2-5x3-x4=-3 3x1-4х2+x3-7x4=-5 2x1+7x2+2x3-3x4=-6
  2.5x1+3x2-4x3+x4=0 -3x1+8x2-2x4=-3 3x1-2x2+2x3-2x4=-7 -3x1+7x2+x3-4x4=-2   -3x2-x3+x4=-3 -x1+5x2+2x3-2x4=-5 x1-2x2+6x3-2x4=2 -3x1+x2+x3-4x4=-8   5x1+2x2-x3+3x4=7 -7x1+6x2-5x3-7x4=-5 x1-12x2+2x3-2x4=-3 -4x1+7x2+x3-7x4=-6
  x1+3x2+4x3+x4=8 -3x1+2x2-4x3-2x4=-5 x1-6x2+2x3-2x4=-1 -3x1+7x2+x3+4x4=12   x1+3x2+2x3+x4=4 -3x1+x2-4x3-2x4=-5 x1-5x2+2x3+3x4=9 -3x1+4x2+x3-7x4=-5   1. 4x1+x2-6x3+x4=5 4x1+8x2-2x3-3x4=-5 -x1-12x2+3x3-2x4=-3 -5x1+7x2+3x3-3x4=-6

 

 

Задание 4

Решить систему линейных алгебраических уравнений из предыдущего задания при помощи функции lsolve.

 

Задание 5

Решить систему уравнений двумя способами (с использованием функции find и с использованием стандартной функции minerr. Варианты заданий приведены в табл.4.15.

Таблица 4.15

Варианты заданий

№ вар Задание № вар Задание № вар Задание
           
     
     
     
     

Окончание табл. 4.15

 

           
     
     
     
     
     
     






Дата добавления: 2014-11-12; просмотров: 1210. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия