Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Символьное решение систем уравнений





 

Функция

Solve, x1, х2...х3

позволяет найти значение перечисленных переменных, при которых содержащее их выражение становится равным нулю. Для решения системы уравнений в шаблон функции solve вставляется вектор, длина которого равна количеству уравнений в системе. Уравнения записываются в вектор.

На рис. 68 приведен пример применения функции solve для решения систем уравнений.

 

Рис.68. Пример применения функции solve для решения систем уравнений.

Оборудование, инструменты и приборы

ПЭВМ, система MathCad

Варианты заданий

Варианты заданий приведены в таблицах 4.12 -4.15.

Задание 1

Решить уравнение согласно заданию своего варианта. Найти все корни уравнения. Точность решения 0.0001. Варианты заданий приведены в табл.4.12.

 

Таблица 4.12

Варианты заданий

 

№ вар Задание № вар Задание № вар Задание
  1/2*x2+3*cos(x)– 5=0     2*x2+ln(2*x–x2) =0
    ln(2*x–x3)+2=0   4*x2–5*x-1–2=0
  sin(x)–5*x3+1=0     x3–8*x2+1.5=0
  |x|–3*x2+1=0   4*|sin(x)|+x2–4=0   4*cos(x)+x2–4=0
    7*|sin(x)|–x–5=0   1/2*x3+3*cos(x)+2=0
  1/2*x+3*cos(x)+2=0   2*x5 –8*x2+0.8=0   8*x3+5*x2–17*x-1=0
  8*x2+5*x-1–17=0   5*x2+3*cos(x)–4=0   8*x3+ ln(x2) =0
  5*x3–6*x+0.2=0   3–7*cos2(x)*sin(x)– –3* sin3(x)=0   ln(7*x)–x-1=0
  5*x4–6*x2+0.5=0   8*sin(2x)– 3*cos2(x)–4=0   1/4*x4–3*cos(x)+2=0
  5*x3–6*x2+3=0   x2+ sin(x)–5*x3=0   2*x4+x3–3*sin(x)=0

 

Задание 2

Решить уравнение полиномиального вида, заданного функцией F(x): = A0+A1*x+A2*x2+A3*x3. Значения коэффициентов взять в соответствии со своим вариантом. Варианты заданий приведены в табл.4.13.


Таблица 4.13

Варианты заданий

№ вар. Значения коэффициентов
А0 А1 А2 А3
  -5      
         
  -55      
    -8 -10  
  -3 -11    
  -5   -9  
  -52   -6  
    -33    
         
  -4      
  -12      
  -7      
         
         
      -11  
         
  -7   -9  
  -3      
         
         
         
         
      -12  
      -2  
    -5   -11
      -2  
      -5  
  -4      
  -6   -2  
        -9

 

 


Задание 3

Решить систему линейных алгебраических уравнений матричным методом. Варианты заданий приведены в табл. 4.14.

Таблица 4.14

Варианты заданий

 

№ вар Задание № вар Задание № вар Задание
           
  5x1+3x2-4x3+x4=8 -3x1+8x2-4x3-2x4=-5 x1-12x2+2x3-2x4=-3 -3x1+7x2+x3-4x4=-6   0.5x+0, 5x2-4x3+x4=8.5 3x1-8x2-4x3-x4=-12 6x1-7x2+2x3-2x4=-5 -3x1+7x2+5x3-4x4=11   -x1+2x2+2x3+8x4=10 -9x1+x2+3x3-7x4=0 11x1+5x2-2x3+5x4=7 x1+3x2+5x3-6x4=4
  9x1+5x2-4x3+x4=6 -x1+6x2-3x3-5x4=-2 x1-2x2+2x3-2x4=-3 -5x1+3x2+x3-x4=-1   2x1-6x3+x4=3 11x1+8x2-x3-2x4=16 x1-2x2+2x3-4x4=0 -4x1+x3-4x4=-10   -4x1-5x2+4x3-5x4=-11 x1-x2-2x3+8x4=7 -4x1+7x2-4x3-4x4=9 9x1+4x2-2x3-12x4=3
  -5x1+4x2-4x3-x4=-4 -x1+6x2-3x3-5x4=-2 x1-3x2+5x3+6x4=7 -4x1+x2+x3-4x4=-2   15x1+13x2-4x3+x4=20 5x1+8x2-4x3=5 3x1-x2+3x3-2x4=-3 -x1+4x2+x3-4x4=0   -10x1-9x2+x3+2x4=-2 4x1+5x2+4x3+12x4=6 -8x1-2x2-x3+9x4=15 4x1-3x2-3x3-2x4=-3
  x1+8x+4x3-2x4=7 7x1-x2+x3-9x4=10 6x1-3x2+x3+12x4=4 11x1-9x2-5x3+6x4=0   10x1+4x3+x4=18 9x1+8x2-4x3-11x4=0 x1-12x2+2x3-2x4=-5 x1+7x2+x3-x4=6   -2x1-6x2+5x3+9x4=-9 6x1+8x2-4x3-2x4=-5 -3x1-4x2-8x3+7x4=13 x1+2x2-7x3+9x4=-4
  -2x1+2x2-9x3+5x4=6 x1-2x2+10x3-7x4=-4 -11x1+x2+9x3-2x4=1 3x1+7x2-x3-x4=3   4x1+x2-4x3+x4=8 -3x1+8x2-4x3-2x4=-5 x1+4x2+2x3-2x4=7 -1.5x1+3x2+x3-4x4=-6   -8x1+2x2+x3-x4=0 x1+10x2-6x3+x4=-10 5x1-2x2+9x3-4x4=-8 -7x1-7x2-5x3+3x4=2
  -x1-5x2-6x3+7x4=0 3x1-7x2-2x3-2x4=-2 2x1+10x2+4x3+2x4=5 -13x1-x2-8x3-3x4=-1   5x1+3x2-4x3+x4=8 x1+x2-4x3-5x4=3 5x1-2x2+4x3-2x4=-3 -x1+7x2-4x4=0   -8x1+2x2+x3-x4=0 x1+10x2-6x3+x4=-10 5x1-2x2+9x3-4x4=-8 -7x1-7x2-5x3+3x4=2
  -5x1+3x2-x3+5x4=-2 7x1-6x2-7x3+x4=3 x1+x2-11x3-5x4=9 5x1-14x2+4x3-6x4=7   5x1+3x2-4x3+x4=8 -3x1+6x2-4x3=-7 x1-9x2+2x3+4x4=0 3x1-2x2+2x3-2x4=-7   6x1-4x2+3x3+5x4=-2 -4x1+7x2-5x3-4x4=-4 2x1-2x2+6x3-72x4=-4 -2x1+7x2+x3-5x4=-3

 

 


Окончание табл. 4.14

           
  10x1+6x2-8x3+2x4=4 6x1-4x2+8x3+4x4=10 -2x1+6x2-4x3+4x4=6 6x1-15x2-2x3+8x4=3   7x1-6x2-7x3+x4=3 x1-6x2+2x3-2x4=-1 -3x1+7x2+x3-4x4=-6 2x1+10x2+4x3+2x4=5   1+2x2-9x3+2x4=0 6x1+9x2-5x3-x4=-3 3x1-4х2+x3-7x4=-5 2x1+7x2+2x3-3x4=-6
  2.5x1+3x2-4x3+x4=0 -3x1+8x2-2x4=-3 3x1-2x2+2x3-2x4=-7 -3x1+7x2+x3-4x4=-2   -3x2-x3+x4=-3 -x1+5x2+2x3-2x4=-5 x1-2x2+6x3-2x4=2 -3x1+x2+x3-4x4=-8   5x1+2x2-x3+3x4=7 -7x1+6x2-5x3-7x4=-5 x1-12x2+2x3-2x4=-3 -4x1+7x2+x3-7x4=-6
  x1+3x2+4x3+x4=8 -3x1+2x2-4x3-2x4=-5 x1-6x2+2x3-2x4=-1 -3x1+7x2+x3+4x4=12   x1+3x2+2x3+x4=4 -3x1+x2-4x3-2x4=-5 x1-5x2+2x3+3x4=9 -3x1+4x2+x3-7x4=-5   1. 4x1+x2-6x3+x4=5 4x1+8x2-2x3-3x4=-5 -x1-12x2+3x3-2x4=-3 -5x1+7x2+3x3-3x4=-6

 

 

Задание 4

Решить систему линейных алгебраических уравнений из предыдущего задания при помощи функции lsolve.

 

Задание 5

Решить систему уравнений двумя способами (с использованием функции find и с использованием стандартной функции minerr. Варианты заданий приведены в табл.4.15.

Таблица 4.15

Варианты заданий

№ вар Задание № вар Задание № вар Задание
           
     
     
     
     

Окончание табл. 4.15

 

           
     
     
     
     
     
     






Дата добавления: 2014-11-12; просмотров: 1210. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия