Тяжелая рука Хевисайда
К несчастью для науки, после смерти Максвелла два других «математических физика» XIX века, Оливер Хевисайд и Уильям Гиббс, свели его оригинальные уравнения к четырем простым (к сожалению, неполным) выражениям. Хевисайд открыто выражал неприятие кватернионов и так никогда и не понял связи между критически скалярными (не имеющее направления измерение, например, скорость) и направленными (направленная величина, например, перемещение) компонентами, как их употреблял Максвелл для описания потенциальной энергии пустоты («яблоки и апельсины», как он называл их). Поэтому, пытаясь «упростить» оригинальную теорию Максвелла, Хевисайд устранил из нее более двадцати кватернионов. Однажды журнал «Сайентифик Американ» назвал Оливера Хевисайда человеком, «получившим знания самостоятельно… никогда не обучавшимся в университетах… но при этом обладавшим выдающейся и непостижимой способностью получать математические результаты значительной сложности, не проходя через осознанный процесс доказательства». По другим свидетельствам, в действительности Хевисайд чувствовал, что использование Максвеллом кватернионов и описания с их помощью «потенциала» пространства было «мистическим и должно было быть удалено из теории». Радикально редактируя оригинальный труд Максвелла после его смерти, вычеркивая скалярный компонент кватернионов и удаляя гиперпространственные характеристики векторного компонента, Хевисайд это и сделал. Это означает, что четыре оставшихся классических «уравнения Максвелла» в том виде, в котором они появляются в каждом тексте по электричеству и физике как фундамент всей электротехники и электромагнитной теории XIX века, никогда не встречались в трудах Максвелла. И все изобретения, от радио до радара, от телевидения до вычислительной техники, все науки, от химии до физики и астрофизики, которые имеют дело с процессами электромагнитного излучения, основаны на этих мнимых «уравнениях Максвелла». На самом же деле это уравнения не Максвелла, а Хевисайда. Конечным результатом стало то, что физика потеряла свои многообещающие теоретические начала как настоящая «гиперпространственная» наука более ста лет назад, а вместо этого, благодаря Хевисайду, стала заниматься весьма ограниченным подразделом сложнейшей теории электромагнитного поля. Сильнейший удар сторонники эфирной модели получили в 1887 году, когда опыты Майкельсона–Морли убедительно доказали, что «материального эфира» не существует. Однако «благодаря» Хевисайду из внимания было упущено, что сам Максвелл никогда не верил в материальность эфира — он только делал предположение о гиперпространственном эфире, который мгновенно соединяет все во Вселенной. Главная причина путаницы, окружающей настоящую теорию Максвелла, а не то, во что ее превратил Хевисайд, кроется в математике — системе обозначений, которую, вероятно, лучше всех описал Х. Дж. Джозеф: «Алгебра кватернионов Гамильтона, в отличие от алгебры векторов Хевисайда, является не просто сокращенным способом картезианского анализа, а самостоятельным разделом математики со своими собственными правилами и специальными теоремами. Фактически кватернион — это обобщенное, или гиперкомплексное, число». В 1897 г. Хатауэй опубликовал работу, в которой эти гиперкомплексные числа конкретно определяются как «числа в четырехмерном пространстве». Таким образом, очевидное игнорирование современными физиками открытия, сделанного Максвеллом в XIX веке — математически обоснованной четырехмерной теории, — происходит из- за недостатка знания истинной природы кватернионной алгебры Гамильтона. И за исключением случая, если вам удастся найти оригинал издания «Трактата» Максвелла 1873 года, очень сложно проверить существование «гиперпространственной» системы обозначений Максвелла, поскольку к 1892 году третье издание уже содержало «коррекцию» употребления Максвеллом «скалярных потенциалов». Такая «коррекция» удаляет из всей теории Максвелла понятие ключевого различия между четырехмерным «геометрическим потенциалом» и трехмерным «векторным полем». По этой причине многие современные физики, например, Мицуи Каку, очевидно, просто не понимают, что фактически оригинальные уравнения Максвелла были первой геометрической теорией четырехмерного поля, выраженной в специальных терминах четырехмерного пространства — на языке кватернионов.
|