Алгебраической - формах.
Например, ЭДС , изображенной на рис. 7 вращающимся вектором, соответствует комплексное число . Фазовый угол определяется по проекциям вектора на оси “+1” и “+j” системы координат, как . В соответствии с тригонометрической формой записи мнимая составляющая комплексного числа определяет мгновенное значение синусоидально изменяющейся ЭДС:
Комплексное число удобно представить в виде произведения двух комплексных чисел:
Параметр , соответствующий положению вектора для t=0 (или на вращающейся со скоростью w комплексной плоскости), называют комплексной амплитудой: , а параметр - комплексом мгновенного значения. Параметр является оператором поворота вектора на угол wt относительно начального положения вектора. Вообще говоря, умножение вектора на оператор поворота есть его поворот относительно первоначального положения на угол ±a. Следовательно, мгновенное значение синусоидальной величины равно мнимой части без знака “ j” произведения комплекса амплитуды и оператора поворота : . Переход от одной формы записи синусоидальной величины к другой осуществляется с помощью формулы Эйлера:
Если, например, комплексная амплитуда напряжения задана в виде комплексного числа в алгебраической форме: , - то для записи ее в показательной форме, необходимо найти начальную фазу , т.е. угол, который образует вектор с положительной полуосью +1: . Тогда мгновенное значение напряжения: , где . При записи выражения для определенности было принято, что , т.е. что изображающий вектор находится в первом или четвертом квадрантах. Если , то при (второй квадрант)
а при (третий квадрант)
или
Если задано мгновенное значение тока в виде , то комплексную амплитуду записывают сначала в показательной форме, а затем (при необходимости) по формуле Эйлера переходят к алгебраической форме: . Следует указать, что при сложении и вычитании комплексов следует пользоваться алгебраической формой их записи, а при умножении и делении удобна показательная форма. Итак, применение комплексных чисел позволяет перейти от геометрических операций над векторами к алгебраическим над комплексами. Так при определении комплексной амплитуды результирующего тока по рис. 5 получим: .
|