Второй постулат Бора (правило частот): при переходе электрона с одной стационарной орбиты на другую излучается (поглощается) один фотон с энергией
hv = En - Em, равной разности энергий соответствующих стационарных состояний En и Em - соответственно энергии стационарных состояний атома до и после излучения (поглощения)). При En < Em происходит излучение фотона (переход атома из состояния с большей энергией в состояние с меньшей энергией, т. е. переход электрона с более удаленной от ядра орбиты на более близлежащую), при Ет>Еп - его поглощение (переход атома в состояние с большей энергией, т. е. переход электрона на более удаленную от ядра орбиту). Набор возможных дискретных частот n=(En - Em)/ h квантовых переходов и определяет линейчатый спектр атома.
ОПЫТЫ ФРАНКА И ГЕРЦА
Из опыта следует (рис.293), что при увеличении ускоряющего потенциала вплоть до 4,86 В анодный ток возрастает монотонно, его значение проходит через максимум (4,86 В), затем резко уменьшается и возрастает вновь. Дальнейшие максимумы наблюдаются при 2 . 4,86 и 3 . 4,86 В. Ближайшим к основному, невозбужденному, состоянию атома ртути является возбужденное состояние, отстоящее от основного по шкале энергий на 4,86 эВ. Пока разность потенциалов между катодом и сеткой меньше 4,86 В, электроны, встречая на своем пути атомы ртути, испытывают с ними только упругие соударения. При е j=4,86 эВ энергия электрона становится достаточной, чтобы вызвать неупругий удар, при котором электрон отдает атому ртути всю кинетическую энергию, возбуждая переход одного из электронов атома из нормального энергетического состояния на возбужденный энергетический уровень. Электроны, потерявшие свою кинетическую энергию, уже не смогут преодолеть тормозящего поля и достигнуть анода. Этим и объясняется первое резкое падение анодного тока при е j=4,86 эВ. При значениях энергии, кратных 4,86 эВ, электроны могут испытать с атомами ртути 2, 3,... неупругих соударения, потеряв при этом полностью свою энергию, и не достигнуть анода, т.е. должно наблюдаться резкое падение анодного тока. Это действительно наблюдается на опыте (рис.293). Таким образом, опыты Франка и Герца показали, что электроны при столкновении с атомами ртути передают атомам только определенные порции энергии, причем 4,86 эВ - наименьшая возможная порция энергии (наименьший квант энергии), которая может быть поглощена атомом ртути в основном энергетическом состоянии. Следовательно, идея Бора о существовании в атомах стационарных состояний блестяще выдержала экспериментальную проверку. Атомы ртути, получившие при соударении с электронами энергию D E, переходят в возбужденное состояние и должны возвратиться в основное, излучая при этом, согласно второму постулату Бора, световой квант с частотой n = D E / h. По известному значению D E =4,86 эВ можно вычислить длину волны излучения: l= hc /D E Таким образом, если теория верна, то атомы ртути, бомбардируемые электронами с энергией 4,86 эВ, должны являться источником ультрафиолетового излучения с l
|