Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Соотношение взаимности Максвелла и их значение.





 

Метод термодинамических потенциалов помогает преобразовывать выражения, в которые входят основные термодинамические переменные и тем самым выражать такие «труднонаблюдаемые» величины, как количество теплоты, энтропию, внутреннюю энергию через измеряемые величины — температуру, давление и объём и их производные.

Рассмотрим опять выражение для полного дифференциала внутренней энергии:

.

Известно, что если смешанные производные существуют и непрерывны, то они не зависят от порядка дифференцирования, то есть

.

Но и , поэтому

.

Рассматривая выражения для других дифференциалов, получаем:

,

,

.

Эти соотношения называются соотношениями Максвелла. Заметим, что они не выполняются в случае разрывности смешанных производных, что имеет место при фазовых переходах 1-го и 2-го рода.

 

Соотношения Максвелла. Все термодинамические потенциалы являются функциями состояния системы. Зная любой из четырех потенциалов как функцию естественных переменных, можно с помощью основного уравнения термодинамики найти все другие термодинамические функции и параметры системы. Для этого используют соотношения между частными производными, которые называют соотношениями Максвелла (таблица).

Например, для соответствующее уравнение получают следующим образом:

= (61)

 

Другие из уравнений, называемых соотношениями Максвелла, получают аналогичным образом.

 

 

Потенциал Естественные переменные Фундаментальное уравнение Соотношения Максвелла
      S,V     =
  H     S,p =
  F     V,T   =
  G     p,T =

 

 







Дата добавления: 2015-10-19; просмотров: 1253. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия