Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЭНТРОПИЯ КАК ФУНКЦИЯ СОСТОЯНИЯ.




 

Энтропия - понятие, для определения меры необратимого рассеивания энергии, меры отклонения реального процесса от идеального. Определённая как сумма приведённых теплот, она является функцией состояния и остаётся постоянной при обратимых процессах, тогда как в необратимых — её изменение всегда положительно.

 

Понятие энтропии было впервые введено в 1865 году Рудольфом Клаузиусом. Он определил изменение энтропии термодинамической системы при обратимом процессе как отношение изменения общего количества тепла ΔQ к величине абсолютной температуры T:

Рудольф Клаузиус дал величине S имя «энтропия», происходящее от греческого слова τρoπή, «изменение» (изменение, превращение, преобразование). Данное равенство относится к изменению энтропии, не определяя полностью саму энтропию.

Эта формула применима только для изотермического процесса (происходящего при постоянной температуре). Её обобщение на случай произвольного квазистатического процесса выглядит так:

где dS — приращение (дифференциал) энтропии, а δQ — бесконечно малое приращение количества теплоты.

Необходимо обратить внимание на то, что рассматриваемое термодинамическое определение применимо только к квазистатическим процессам (состоящим из непрерывно следующих друг за другом состояний равновесия).

Поскольку энтропия является функцией состояния, в левой части равенства стоит её полный дифференциал. Напротив, количество теплоты является функцией процесса, в котором эта теплота была передана, поэтому δQ считать полным дифференциалом нельзя.

Энтропия, таким образом, согласно вышеописанному, определена вплоть до произвольной аддитивной постоянной. Третье начало термодинамики позволяет определить её точнее: предел величины энтропии равновесной системы при стремлении температуры к абсолютному нулю полагают равным нулю.

Эта формула применима только для изотермического процесса (происходящего при постоянной температуре). Её обобщение на случай произвольного квазистатического процесса выглядит так:

 

Термин широко применяется и в других областях знания: в статистической физике — как мера вероятности осуществления какого-либо макроскопического состояния; в теории информации как мера неопределённости какого-либо опыта (испытания), который может иметь разные исходы; в исторической науке, для экспликации феномена альтернативности истории (инвариантности и вариативности исторического процесса).

27.ФОРМУЛИРОВКА ВТОРОГО НАЧАЛА ТЕРМОДИНАМИКИ С ИСПОЛЬЗОВАНИЕМ ПОНЯТИЯ ЭНТРОПИЯ. ТЕРМОДИНАМИЧЕСКИЙ СМЫСЛ ЭНТРОПИИ.
Второе начало термодинамики
— физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами.
Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая невозможность перехода всей внутренней энергии системы в полезную работу.
Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.
Энтропия - определение меры необратимого рассеивания энергии, меры отклонения реального процесса от идеального. Определённая как сумма приведённых теплот, она является функцией состояния и остаётся постоянной при обратимых процессах, тогда как в необратимых — её изменение всегда положительно.
Термодинамический смысл энтропии.

Понятие энтропии было впервые введено в 1865 году Рудольфом Клаузиусом. Он определил изменение энтропии термодинамической системы при обратимом процессе как отношение изменения общего количества тепла ΔQ к величине абсолютной температуры T:

Рудольф Клаузиус дал величине S имя «энтропия», происходящее от греческого слова τρoπή, «изменение» (изменение, превращение, преобразование). Данное равенство относится к изменению энтропии, не определяя полностью саму энтропию.

Эта формула применима только для изотермического процесса (происходящего при постоянной температуре). Её обобщение на случай произвольного квазистатического процесса выглядит так:

где dS — приращение (дифференциал) энтропии, а δQ — бесконечно малое приращение количества теплоты.

Необходимо обратить внимание на то, что рассматриваемое термодинамическое определение применимо только к квазистатическим процессам (состоящим из непрерывно следующих друг за другом состояний равновесия).

Поскольку энтропия является функцией состояния, в левой части равенства стоит её полный дифференциал. Напротив, количество теплоты является функцией процесса, в котором эта теплота была передана, поэтому δQ считать полным дифференциалом нельзя.

Энтропия, таким образом, согласно вышеописанному, определена вплоть до произвольной аддитивной постоянной. Третье начало термодинамики позволяет определить её точнее: предел величины энтропии равновесной системы при стремлении температуры к абсолютному нулю полагают равным нулю.

28.СТАТИСТИЧЕСКИЙ СМЫСЛ ЭНТРОПИИ. Ф-ЛА БОЛЬЦМАНА.
Рассмотрим сосуд в котором содержатся молекулы причём не сосредоточены в первой части при этом состоянии термодинамическое равновесие молекулы разделятся поровну между частями сосуда в идеальном случае. В реальности такое состояние недостижимо неравно неравно такие отклонения чисел , от средних значений обусловлено тепловым движением, которое назыв. флуктуациями. Рассчитаем вероятность таких процессов очевидно если количество молекул в сосуде N=1,то Р= ; N=2,то Р= , вероятность того что частица V0/V, V0- та часть сосуда в котором мы ожидаем видеть частицы, V-весь объём, Р . Относительно большие флуктуации встречаются в системах с малым числом частиц , система с большим числом частиц флуктуации практически не встречаются, следовательно энтропия самостоятельно стремится в состояние с большей энтропией. Рассм. Две подсистемы с вероятными =f( , =f( , тогда , f( = f( + f( при этом , то и f( + f( d f( f( с другой стороны = . = . K=const, тогда P , f=kln . S=k ln P-раз это ф-ла справедлива для любой системы значит справедлива для идеального газа. Рассм процесс изотермический перехода идеального газа из состояния 1 в 2, ΔS= =k(ln )=Rln т.к. , ; Rln =kln , R=k . S=klnG- формула Больцмана.

 







Дата добавления: 2015-10-19; просмотров: 936. Нарушение авторских прав


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2018 год . (0.002 сек.) русская версия | украинская версия