Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Изобарический





В изобарическом процессе (P = const):

 

δQ = dU + PdV = νCVΔT + νRΔT = ν(CV + R)ΔT = νCPΔT

 

CP=δQ/νΔT=CV+R=(1+i/2)*R

 

 

17.Первое начало термодинамики и его различные формулировки

 

Закон представляет формулировку принципа сохранения энергии для термодинамических

систем. Он формулируется следующим образом:

При переходе системы из состояния A в состояние B сумма работы и теплоты, полученных системой от окружающей среды, определяется только состояниями A и B; эта сумма не зависит от того, каким способом осуществляется переход из A в B.

Это означает, что существует такая величина E, характеризующая внутреннее состояние системы, что разность ее значений в состояниях A и B определяется соотношением

EBEA = QL, (1)

где (– L) – работа, совершенная средой над системой, а Q – количество тепла, полученное системой от окружающей среды (количество энергии, передаваемое системе термическим образом, т.е. в форме, отличной от работы).
Величина E называется внутренней энергией системы.

Для бесконечно малого изменения состояния

dE = δ Qδ L, (2)

или, используя выражение для δ L,

dE = δ QPdV. (3)

Таким образом, изменение внутренней энергии системы равно сумме полученного тепла и совершенной над системой работы. (1)

Пример: Рассмотрим систему, состоящую из определенного количества воды в сосуде. Энергию системы можно увеличить двумя путями. Первый: можно нагревать сосуд на огне. При этом объем воды почти не увеличивается, т.е. dV = 0 и, следовательно, работа не производится. Второй путь: опустим в воду установку с вращающимися лопастями и путем трения увеличим температуру воды до того же значения, что и в первом случае. Конечные состояния системы и приращения ее энергии в обоих случаях одни и те же, но во втором случае увеличение энергии обусловлено работой.

Эквивалентность теплоты и механической работы становится особенно ясной, если рассмотреть циклический процесс. Так как начальное и конечное состояния цикла одинаковы, то изменение энергии равно нулю (EA = EB) и, следовательно,

L = Q, (4)

т.е. работа, совершенная системой во время цикла, равна количеству теплоты, поглощенному системой. (4)

Теплота измеряется в единицах энергии – эргах, джоулях и калориях. Соотношение между джоулем и калорией имеет вид

1 кал = 4.18 Дж. (5)

Это – механический эквивалент теплоты.

Величины Q и L не являются функциями состояния системы; они зависят от способа перехода из состояния А в В. Соответственно этому δ Q и δ L не являются полными дифференциалами. Это обстоятельство и отмечается использованием символа δ;, а не d. (1)

 

Применим первый закон к системам типа однородной жидкости, состояния которых определяются двумя из трех переменных P, V и T. В этом случае любая функция состояния системы и, в частности, внутренняя энергия E будет функцией двух переменных, выбранных в качестве независимых.

Чтобы избежать неправильного толкования того, какая переменная является независимой при вычислении частной производной, будем заключать символ частной производной в скобки и помещать внизу скобок ту величину, которая при частном дифференцировании остается постоянной. Таким образом,

(∂ E /∂ T) V

означает частную производную E по T при постоянном V; причем T и V взяты в качестве независимых переменных. Эта производная отличается от частной производной (∂ E /∂ T) P, при взятии которой остается постоянным давление P. (3)

Рассмотрим теперь бесконечно малый процесс, т.е. процесс, при котором независимые переменные изменяются на бесконечно малые величины. Для такого процесса 1-й закон термодинамики можно переписать в виде

δ Q = dE + P dV (6)

Если в качестве независимых взять переменные T и V, то E = E (T, V) и, следовательно,

Соотношение принимает тогда вид:

(7)

Если считать независимыми переменными T и P, то

и принимает вид

(8)

Теплоемкость тела определяется как отношение бесконечно малого количества поглощенной теплоты к бесконечно малому изменению температуры, вызванному этой теплотой.

Очевидно, что величина теплоемкости зависит от того, нагревается ли тело при постоянном объеме или при постоянном давлении. Обозначим символами cV и cP теплоемкости при постоянном объеме и при постоянном давлении соответственно. Поскольку при V = const, dV = 0, то

(9)

Подобным же образом из (8) получается выражение для cP:

(10)

Второй член в формуле для cP связан со слагаемым PdV, т.е. описывает эффеккт, оказываемый на теплоемкость работой, которую система совершает во время расширения. В (9) подобного члена нет, поскольку объем остается постоянным и работа не совершается. (1)

Во многих случаях удобно пользоваться понятием молярной теплоемкости. Молярной теплоемкостью называется теплоемкость одного моля вещества. Молярные теплоемкости при постоянном V и при постоянном P определяются формулами (9) и (10), если вместо произвольного количества вещества взять 1 моль:

(11)

знак сверху означает, что взят 1 моль вещества. (2)

 

В случае газа можно конкретизировать зависимость внутренней энергии E от переменных T и V, определяющих его состояние. В дальнейшем мы докажем, что энергия идеального газа определяется температурой T и не зависит от объема V: E = E (T). Для реальных газов это утверждение выполняется приближенно. Для определения зависимости E (T) воспользуемся результатами опыта, согласно которым теплоемкость газов очень слабо зависит от температуры. Можно предположить, что для идеального газа она строго постоянна. Тогда интегрирование уравнения

(12)

при условии CV = const дает:

(13)

где E 0– константа, представляющая энергию газа при абсолютном нуле.
Внутренняя энергия N молей газа

E = N (CVT + E 0). (14)

Для идеального газа 1-й закон термодинамики принимает вид

(15)

Из этого уравнения легко получить соотношение между молярными теплоемкостями CV и CP. Для этого перейдем от переменных T и V к переменным T и P. Это можно сделать, если взять дифференциалы от обеих частей уравнения состояния для 1 моля идеального газа

(16)

что дает

Выражая отсюда и подставляя в (15), получаем

Отсюда можно легко найти CP. Поскольку при P = const дифференциал dP = 0, то

(17)

т.е. разность между молярными теплоемкостями газа при постоянном давлении и при постоянном объеме равна газовой постоянной R. (1)

 

Литература:
1.Мякишев Г.Я., Буховцев Б.Б. Физика 10 кл.
2.Шахмаев Н.М. Физика 10 кл.
3.Свитков Л.П. Термодинамика и молекулярная физика 1970г.

4.Билимович Б.Ф. Тепловые явления в технике1981г.

 

 







Дата добавления: 2015-10-19; просмотров: 655. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия