Студопедия — Процессор
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Процессор






В современных ПК функции центрального процессора выполняет микропроцессор.

Микропроцессор – большая интегральная схема, представляющая собой кремневый кристалл в пластмассовом, керамическом или металлокерамическом корпусе, на котором расположены выводы для приема и выдачи электрических сигналов. Это основная микросхема компьютера, в которой и производятся все вычисления.

Современная модель процессора представляет собой сложнейшую систему, включающую множество устройств: блок управления, регистры, кэш-память, АЛУ, интерфейс системной шины и т.д. Все эти устройства состоят из множества отдельных элементов, называемых транзисторами. Каждый процессор включает в себя десятки миллионов таких транзисторов.

В настоящее время среди производителей процессоров лидируют две компании Intel Corporation и Advanced Micro Devices (AMD). Среди последних моделей от Intel можно выделить Pentium 4 и Celeron 4, а от AMD – Athlon и Duron.

Процессоры Pentium 4 функционируют на частоте 2,4 ГГц, 2,6 ГГц, 2,8 ГГц, 3ГГц или 3,2 ГГц (тактовая частота – скорость выполнения команд процессором).

Конструктивно процессор состоит из ячеек, похожих на ячейки оперативной памяти, но в этих ячейках данные могут не только храниться, но и изменяться Внутренние ячейки процессора называются регистрами. Данные, попавшие в некоторые регистры, рассматриваются не как данные, а как команды, управляющие обработкой данных в других регистрах. С остальными устройствами компьютера, и в первую очередь с оперативной памятью, процессор связан группами проводников, называемых шинами. Основных шин три: шина данных, адресная шина, командная шина.

У процессоров Intel Pentium адресная шина 32-разрядная, шина данных 64-разрядная, шина команд в большинстве процессоров 32-разрядная, хотя существуют 64-разрядные процессоры и даже 128-разрядные.

Основные параметры процессора:

· Рабочее напряжение. Обеспечивает материнская плата. По мере развития микропроцессорной техники происходит постепенное понижение рабочего напряжения. Ранние модели процессоров х86 имели рабочее напряжение 5 В. С переходом к процессорам Intel Pentium оно было понижено до 3,3 В. Понижение рабочего напряжения позволяет уменьшить расстояния между структурными элементами в кристалле процессора до десятитысячных долей миллиметра, не опасаясь электрического пробоя. Пропорционально квадрату напряжения уменьшается и тепловыделение в процессоре, а это увеличивает его производительность без угрозы перегрева.

· Разрядность показывает, сколько бит данных он может принять и обработать в своих регистрах за один раз (один такт). Первые процессоры семейства х86 были 16-разрядными. Начиная с процессора 80386 они имеют 32-разрядную архитектуру.

· Тактовая частота. Скорость выполнения команд процессором называется тактовой частотой или частотой тактовых импульсов. Измеряется этот показатель в гигагерцах (ГГц); 1 ГГц равен одному миллиарду тактов в секунду. В основе работы процессора лежит тот же тактовый принцип, что и в обычных часах. Исполнение каждой команды занимает определенное количество тактов. В ПК тактовые импульсы задает одна из микросхем. Чем выше частота тактов, поступающих на процессор, тем больше команд он может исполнить в единицу времени, тем выше его производительность. Производители постоянно повышают тактовую частоту процессоров, сокращают выпуск более медленных моделей. Первые процессоры Celeron работали на частоте 266 МГц, но сейчас уже невозможно приобрести процессор с частотой менее 1,2 ГГц.

Специалисты из Intel считают, что главной характеристикой процессора является его тактовая частота, и пытаются максимально увеличить этот показатель. Разработчики компании AMD для повышения быстродействия процессоров применяют различные архитектурные решения, пытаясь максимально увеличить количество одновременно выполняемых операций.

· Размер кэш-памяти. Для уменьшения количества обращений к оперативной памяти, внутри процессора создают буферную память – так называемую кэш-память. Когда процессору нужны данные, он сначала обращается в кэш-память, и только если там нужных данных нет, происходит его обращение в оперативную память. Кэш-память распределяется по нескольким уровням. Физически кэш 1 уровня представляет собой небольшое количество очень быстрой оперативной памяти, расположенной внутри процессора. Это устройство появилось в семействе х86 вместе с 486 процессором. В настоящее время устанавливается кэш объемом 256 или 512 Кбайт.

Кэш-память. Появился этот вид памяти недавно, но начиная с 486-го процессора, без кэш-памяти не обходится ни одна модель. Название «кэш» происходит от английского слова «с ache», которое обозначает «тайник» или «замаскированный склад». «Секретность» кэша заключается в том, что он невидим для пользователя и данные, хранящиеся там, недоступны для прикладного программного обеспечения.

Кэш представляет собой «быструю» статическую память небольшого объема, которая служит для ускорения доступа к полному объему «медленной» динамической памяти. Основная идея работы кэш-памяти заключается в том, что извлеченные из ОЗУ данные или команды программы копируются в кэш. Если эти данные потребуются повторно, то уже не надо будет терять время на обращение к ОЗУ – их можно получить из кэша значительно быстрее.

Поскольку объем кэша существенно меньше объема ОЗУ, его контроллер (управляющая схема) тщательно следит за тем, какие данные следует сохранять в кэше, а какие заменять: удаляется та информация, которая используется реже или совсем не используется. Он же обеспечивает своевременную запись измененных данных из кэша обратно в ОЗУ.

В современных компьютерах кэш-память обычно реализуется по двухуровневой схеме. При этом первичный кэш встроен непосредственно внутрь процессора, а вторичный устанавливается на системной плате. Увеличение объема кэш-памяти повышает эффективность работы компьютерной системы.

Технологии повышения производительности процессора. Разработчики процессоров постоянно заботятся о повышении их производительности. Один из способов заставить процессор функционировать быстрее – это увеличить его тактовую частоту. Однако рост тактовой частоты процессора ограничивается технологическими нормами производства устройства (норма – параметр, задающий минимальный размер транзисторов и других элементов микросхемы).

Второй способ увеличения быстродействия состоит в использовании архитектурных решений, которые позволяют выполнять несколько операций одновременно – подобно тому, как на конвейере по сборке автомобилей параллельно собирается несколько машин. К основным архитектурным решениям, позволяющим повысить производительность, относятся конвейерная и скалярная обработка команд, предсказание переходов, спекулятивное выполнение команд.

При конвейерной обработке команд выполнение любой команды процессора (инструкции) производится в несколько стадий и за каждую из них отвечает определенная часть аппаратного обеспечения процессора. В конвейерах современных процессоров, в так называемых суперконвейерах, выполняемая команда разбивается на 10-20 стадий, что позволяет максимально упростить реализацию каждой стадии и сократить время ее выполнения.

Процессоры, имеющие по одному конвейеру, называются скалярными. К их числу относятся все ранние модели процессоров Intel, включая 486-й. современные модели процессоров Pentium, Athlon и Duron, имеющие по нескольку конвейеров, называются суперскалярными.

Технология предсказания ветвлений позволяет продолжать выполнение команд программы после выборки инструкции условного перехода, не дожидаясь проверки самого условия. При использовании данной технологии процессор предсказывает, какую из ветвей программы следует выполнять далее, и начинает это делать, не дожидаясь результатов проверки условия. При этом применяются различные алгоритмы предсказания (статический и динамический), выбор между которыми происходит с учетом информации об истории исполнения данной ветви программы. Любой из этих алгоритмов позволяет не останавливать конвейер и по возможности продолжать выполнение программы. Если предсказание оказывается ошибочным, конвейер теряет несколько тактов (говорят, что он простаивает) на переход к выполнению нужной ветви программы. Но поскольку вероятность предсказания переходов у современных процессоров достаточно высока, потери от простоя конвейера незначительны (вероятность успешных предсказаний у Pentium 4 – 0,94).

Процессоры с расширенной и сокращенной системой команд. Совокупность всех возможных команд, которые может выполнить процессор над данным, образует так называемую систему команд процессора.

Чем шире набор системных команд процессора, тем сложнее его архитектура, тем длиннее формальная запись команды (до 20 байт), тем выше средняя продолжительность исполнения одной команды, измеренная в тактах работы процессора. Все эти характеристики типичны для так называемого CISC-компьютера. (Complex Instruction Set Computer, CISC –компьютер со сложным набором команд).

В противоположность CISC – процессорам в середине 80-х годов появились процессоры архитектуры RISC с уменьшенным набором инструкций одинаковой длины (Reduced Instruction Set Computer). При такой архитектуре количество команд в системе намного меньше и каждая из них выполняется намного быстрее. Обычно RISC-машинам под силу исполнение сразу нескольких инструкций за такт, а на CISC – машинах есть инструкции, для выполнения, требующие более 100 тактов.

Упрощение системы команд позволяет оптимизировать время их выполнения и существенно ускорить работу процессора. Что касается «отброшенных» при упрощении возможностей, то они используются относительно редко и вполне могут быть реализованы программным путем.

Процессоры фирмы Intel относятся к CISC – группе (для наращивания быстродействия в них применяют отдельные достижения RISC – архитектуры, в частности метод конвейеризации).







Дата добавления: 2015-10-19; просмотров: 555. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия