Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

РЕГРЕССИОННЫЙ АНАЛИЗ





Параболой называется геометрическое место точек, одинаково удаленных от данной точки – фокуса и данной прямой – директрисы (рис. 7).

Каноническое уравнение параболы имеет два вида:

1. - парабола, симметричная относительно Ох;

Рис. 7

2. - парабола, симметричная относительно Oу.

Парабола имеет фокус и директрису .

Парабола имеет фокус и директрису .

Примеры

1. Составить геометрическое место точек, одинаково удаленных от точки и прямой

Из условия , получаем , следовательно, это парабола, каноническое уравнение которой имеет вид или .

2. Написать уравнение параболы, проходящей через точку и и симметричной относительно оси Ох.

Каноническое уравнение параболы, симметричной относительно оси Ох и проходящей через начало координат, имеет вид . Подставим в это уравнение координата второй точки получим , тогда искомое уравнение имеет вид .

ПОЛУЧЕНИЕ ЭМПИРИЧЕСКИХ МОДЕЛЕЙ.

РЕГРЕССИОННЫЙ АНАЛИЗ

Регрессионным анализом называется метод построения модели на основе экспериментальных данных.

Применение регрессионного анализа для обработки результатов наблюдений позволяет получить теоретическую зависимость (регрессию) переменных состояния системы от ее параметров и входных воздействий.

Совокупность точек в пространстве, соответствующих экспериментальным данным (каждая из осей соответствует входному воздействию или параметру системы, одна из осей представляет собой отклик системы), называется корреляционным полем.

Различают парную и множественную регрессию.

Регрессия называется парной, если она представляет собой зависимость переменной y от единственной переменной x.

Регрессия называется множественной, если получена зависимость переменной y от нескольких переменных x1, x2, …xn.

Линейная регрессия ищется в виде линейной функции, нелинейная – в виде некоторой разновидности нелинейных функций.

Регрессионный анализ состоит из двух основных этапов.

1 Определяется вид зависимости (общий вид функции) y = f(x), характер поведения которой близок к описанию поведения точек корреляционного поля.

2 Определяются параметры этой функции, при которых она наилучшим образом описывает (аппроксимирует) поведение точек корреляционного поля.

Для нахождения теоретической линии регрессии (параметров выбранной функции) по данным экспериментальных замеров применяется метод наименьших квадратов. Суть его состоит в том, что отыскивается теоретическая линия регрессии у по х, такая, что сумма квадратов расстояний от этой линии до каждой экспериментальной точки с такими же х-координатами минимальна.

То есть функция регрессии у по х строится таким образом, чтобы соблюдался принцип наименьших квадратов:

, (2.1)

где j – порядковый номер точки в экспериментальном числовом ряду:

yj экспериментальное значение y для определенного значения аргумента хi;

y'j – расчетное значение y при заданной величине аргумента хi в соответствии с их теоретической взаимосвязью (то есть полученное путем подстановки хi в уравнение теоретической зависимости).

Для нахождения значений параметров функции, соответствующих принципу наименьших квадратов, находятся частные производные функции по этим параметрам и приравниваются к нулю. Решая полученную систему уравнений, получаем параметры функции, при которых она максимально приближена к точкам корреляционного поля.







Дата добавления: 2015-10-19; просмотров: 904. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия