Студопедия — Аналогично функционирует приоритетный шифратор К555ИВ2, отличитель­ной особенностью которого является наличие выходов с тремя состояниями, что
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Аналогично функционирует приоритетный шифратор К555ИВ2, отличитель­ной особенностью которого является наличие выходов с тремя состояниями, что






Рис. 15.4. Условное схематичное изображение шифратора К555ИВ1 (а) и расширенный шифратор форматом 16х4 (б)

облегчает каскадирование шифраторов. Другой приоритетный шифратор К555ИВЗ имеет формат 10х4 и функционирует аналогично предыдущему.

Дешифратором называют преобразователь двоичного я-разрядного кода в унитарный 2"-разрядный код, все разряды которого, за исключением одного, рав­ны нулю. Дешифраторы бывают полные и неполные. Для полного дешифратора выполняется условие:

где п — число входов, а N — число выходов.

В неполных дешифраторах имеется п входов, но реализуется N<2"; выходов. Так, например, дешифратор, имеющий 4 входа и 10 выходов будет неполным, а дешифратор, имеющий 2 входа и 4 выхода, будет полным.

Рассмотрим принцип построении дешифратора на примере преобразования трехразрядного двоичного кода в унитарный код. Если считать, что входы и выходы упорядочены по возрастающим номерам, т. е. считать, что коду 000 соот­ветствует выход Ко, коду 001 — выход у) и т. д., то для полного дешифратора можно записать восемь упорядоченных уравнений:

Реализовать восемь уравнений (15.3) можно с помощью восьми трехвходовых элементов И. Полученная схема дешифратора приведена на рис. 15.5 а, а его ус­ловное схематичное изображение приведено на рис. 15.5 б.

Для расширения числа входов и выходов используют каскадное включение дешифраторов. На рис. 15.6 показана группа из пяти дешифраторов, соединенних последовательно в два каскада. Все дешифраторы одинаковые. Кроме кодовых входов каждый дешифратор имеет вход стробирующего сигнала (вход С). Сигнал на выходе дешифратора появляется только при С=1. Если С=0, то на всех выхо­дах дешифратора будут нули, т. е. дешифратор заперт.

На входы первого дешифратора DD\ подаются старшие разряды Хц и Xs. чис­ла, которое нужно дешифрировать. Таким образом, дешифратор DDI определяет, какой из четырех дешифраторов DD2... DD5 из подключенных к нему будет вы­полнять дешифрирование младших разрядов числа. Выходные сигналы первого дешифратора подключены к стробирующим входам С остальных и разрешают их работу.

Младшие разряды дешифрируемого числа X, и Х-г подаются на входы дешиф­раторов DD2... DD5. Однако выполнять дешифрирование этих разрядов будет только тот дешифратор, который включен сигналом, поданным на вход С от дешифратора старших разрядов.

Рис. 15.5. Схема дешифратора 3х8 (а) и его условное схематичное изображение (б)

Так, например, при дешифрировании числа 1001 на вход поступает код 10, которым возбуждается выход 2. В этом случае включается дешифратор DD4, на вход которого подан код 01 младших разрядов дешифрируемого числа. В резуль­тате будет возбужден выход 1 дешифратора Z)D4, при этом на выходе появится сигнал У9, что соответствует выбранному входному коду.

Для расширения числа входов и выходов дешифраторов можно также вос­пользоваться параллельным или прямоугольным дешифратором, схема которого приведена на рис. 15.7. Схема прямоугольного дешифратора состоит из двух сту­пеней. Первая ступень состоит из двух дешифраторов DD\ и DD2, первый из которых дешифрует младшие разряды Х\ и Х^ входного числа, а второй — стар­шие разряды Х^ и Х^ Вторая ступень состоит из N элементов 2И-НЕ. Все элемен­ты 2И-НЕ разделены на строки и столбцы: строками управляет дешифратор пер­вой ступени на DD\, а столбцами управляет дешифратор DD2, Схема, приведен­ная на рис. 15.7, соответствует полному дешифратору. Если исключить некоторые из элементов 2И-НЕ, то получим неполный дешифратор с уменьшенным числом выходов.

Рис 156 Каскадное включение дешифраторов

Рис 157 Схема прямоугольного дешифратора

Интегральные микросхемы преобразователей кодов, шифраторов и дешифра­торов. Промышленность выпускает большое количество различных микросхем преобразователей кодов, шифраторов и дешифраторов, некоторые из которых приведены в табл. 15.3.

Таблица 15.3 Интегральные микросхемы преобразователей кодов, шифраторов и дешифраторов

Наименование микросхемы     Кол-во входов Кол-зо выходов
К155ИД1 Высоковольтный дешифратор для управления газоразрядными индикаторами    
К555ИДЗ Полный дешифратор 4х16 со стробированием    
К555ИД4 Сдвоенный дешифратор 2х4 со стробированием    
К555ИЛ5 Сдвоенный дешифратор 2х4 с открытым коллекторным выходом    
К555ИД6 Дешифратор 4х10    
К155ИД8 Преобразователь кода для управления светодиодной матрицей 7Х5    
К555ИД10 Дешифратор 4х10 с открытым коллекторным выходом    
К155ИД11 Преобразователь кода для управления шкальным индикатором с заполнением    
К155ИД12 Преобразователь кода для управления шкальным индикатором с одной точкой    
К155ИД13 Преобразователь кода для управления шкальным индикатором с двумя точками    
1531ИД14 Сдвоенный дешифратор 2х4 со стробированием 2Х2 4х4
К155ИД15 Преобразователь кода для управления шкальным индикатором    
К555ИВ1 Приоритетный шифратор 8х3    
К533ИВ2 Приоритетный шифратор 8х3 с тремя состояниями на выходе    
К555ИВЗ Приоритетный шифратор 10Х4    
К155ПР6 Преобразователь двоично-десятичного кода в двоичный    
К155ПР7 Преобразователь двоичного кода в двоично-десятичный    

На базе микросхем, приведенных в табл. 15.3, возможно проектирование пре­образователей кодов, шифраторов и дешифраторов различной степени сложности. Кроме приведенных специализированных микросхем иногда используют програм­мируемые запоминающие устройства, которые применяют для вывода различных символов на экран монитора при управлении от двоичного кода. К таким элемен­там относятся микросхемы ПЗУ типа К155РЕ21...К155РЕ24, которые используются в качестве преобразователей двоичного кода в код русского, латинского алфави­та, код арифметических и дополнительных символов.

Лекция 16. Мультиплексоры и демультиплексоры

Мультиплексоры. Мультиплексором называют функциональный узел, кото­рый обеспечивает передачу цифровой информации, поступающей по нескольким входным линиям связи, на одну выходную линию. Выбор входной линии, инфор­мация с которой поступает на выход, осуществляется при помощи сигналов, поступающих на адресные входы.

Обобщенная схема мультиплексора приведена на рис. 16.1. Мультиплексор MUX (Multiplexer) в общем случае можно представить в виде коммутатора, управ­ляемого входной логической схемой. Входные логические сигналы X, поступают на входы коммутатора и через коммутатор передаются на выход Y. Управление коммутатором осуществляется входной логической схемой. На вход логической схемы подаются адресные сигналы A,, (Adress). Мультиплексоры могут иметь дополнительный управляющий вход Е (Enable), который может выполнять стро-бирование выхода Y. Кроме этого некоторые мультиплексоры могут иметь выход с тремя состояниями: два состояния 0 и 1 и третье состояние — отключенный выход (выходное сопротивление равно бесконечности). Перевод мультиплексора в третье состояние производится сигналом ОЕ (Output Enable).

Большинство мультиплексоров способно передавать сигналы информации X,

только в одном направлении — от входа на выход. Однако имеются мультиплексоры, которые могут пе­редавать информационные сигналы в обоих направлениях. Такие мульти­плексоры называются двунаправлен­ными. Двунаправленные мультиплек­соры способны передавать не только цифровые, но и аналоговые сигналы. В литературе такие мультиплексоры часто называют селекторами-мульти­плексорами (Data Selector-Multi­plexer).

Рис. 16 1. Обобщенная схема мультиплексора

Мультиплексоры со стробирующим входом Е выполняют функции передачи сигнялов х,—>-у только при поступлении сигнала строба Е. Мультиплексоры, име­ющие три состояния выхода, можно каскадировать.

Для обозначения коммутационных возможностей мультиплексора можно пользоваться условно записью (лг—^1), где п — число входов. Так, например, мультиплексор с функцией (1 —> 1) является одиночным ключом, а мультиплексор (4-*1) имеет четыре входа и один выход.

В зависимости от соотношения числа информационных входов п и числа адресных входов т мультиплексоры делятся на полные и неполные. Если вы­полняется условие п =2", то мультиплексор будет полным. Если это условие не выполняется, т. е. п<2"1, то мультиплексор будет неполным. Наибольшее распро­странение получили мультиплексоры (2—1) с п=2 и т=\, (4--1) с и =4 и т=2, (8—*!) с и=8 и т=3 и (16—*1) с и=16 и т=4. Для неполных мультиплексоров число входных линий может быть любым, но, разумеется, не больше 2";.

В качестве примера рассмотрим функционирование мультиплексора (4—» 1), состояние входов и выходов которого приведено в табл. 16.1. Используя таблицу состояний этого мультиплексора, получим выражение для его выходной функции

В общем виде выходная функция мультиплексора (и—*!) может быть пред­ставлена как

где К, называется мипитерм (К,=0 или 1) и равно логическому произведению сиг­налов на адресных линиях, соответствующих сигналу X,.

Для расширения числа входных линий можно использовать каскадирование мультиплексоров. На рис. 16.2 показано пирамидальное каскадирование мульти­плексоров.

На этом рисунке приведен двухкаскадный мультиплексор типа (16—-I) с уп­равлением по четырем адресным линиям А^...А^. Первая группа мультиплексоров MUXO...MUX3 управляется младшими разрядами адресных сигналов А о и А\.

выходной мультиплексор MUX4 управляется стар­шими рязрядами адресных сигналов А-^ и Ау. Такое каскадирование мультиплексоров почти вдвое уве­личивает задержку выходных сигналов.

Реализация четырехвходового мультиплексора может выполняться по уравнению (16.1) или в об­щем случае — по уравнению (16.2). Так, например, для двувходового мультиплексора можно записать уравнение

Y=Xo-Ao+X^-Ao,

которое реализуется на двувходовых элементах И и ИЛИ, как показано на рис. 16.3 а.

Таблица 16.1

Состояние мультиплексора (4--1)

А, А, у
  о ^0
    ^
  о Хг
    X,

 

Аналогично реализуется че-тырехвходовой мультиплексор, однако для него потребуются че­тыре трехвходовых элемента И и один четьгрехвходовой элемент ИЛИ Схема такого мультиплек­сора, построенного по уравнению (16 1), приведена на рис 16.3 б Для получения прямых и инверс­ных адресных сигналов использу­ются два дополнительных инвер­тора Поскольку для построения мультиплексоров с большим чис­лом входов требуются элементы И и ИЛИ с числом входов больше четырех, то их проще выполнять путем каскадирования

Интегральные микросхемы мультиплексоров можно разде­лить на группы по следующим признакам

• по числу входов 2-, 4-, 8- и 16-входовые,

• по числу мультиплексоров в одном корпусе (числу разря­дов),

• по наличию стробирующего входа Е,

Рис 16 2 Пирамидальное каскадирование мультиплексоров (4 -* 1) для реализации выходной функции (16—*1)

по наличию выхода с тремя состояниями (наличию входа ОЕ),

по способности передавать сигналы в двух направлениях.

Промышленность выпускает большое количество различных микросхем муль­типлексоров, некоторые из которых приведены в табл. 16.2.

Применение мультиплексоров с тремя состояниями выходов позволяет легко увеличить число коммутируемых каналов. На рис. 16.4 показана схема мульти­плексора (16-* 1), выполненная на мультиплексорах (8—-1) и дешифраторе 1х2 Выходы Y мультиплексоров DD\ и DD2 соединены вместе для организации функции «монтажное ИЛИ». При значении адресного сигнала A^=Q включается микросхема DD\, а при значении A^=l — микросхема DD2. При включении мик­росхемы DD\ на общий выход поступает один из информационных сигналов Ху x^, подключенных к входам DDI. При включении микросхемы DD2 на общий выход поступают сигналы Ху..х^. В качестве элементов DDI и DD2 в этой схеме можно использовать интегральные микросхемы КР531КП15 (или более медленные ИМС К555КП15)

Другой способ каскадирования ИМС мультиплексоров основан на исполь­зовании пирамидальной схемы, приведенной на рис. 16.2. Если взять восемь

Рис. 163. Выполнение мультиплексора (2—1) (а) и (4-*1) (б) на элементах И и ИЛИ

мультиплексоров (8-*!), не имеющих третьего состояния выхода (например, К555КП7), на их адресные входы Ац.-.А^, подать одни и те же адресные сигналы, производящие выбор одного из восьми каналов в каждом мультиплексоре, то общее число входов будет равно 64 (рис. 16.5).

Последний мультиплексор DD9 управляется адресными сигналами А^, Ац, А., и определяет, какой из восьми мультиплексоров DDI...DDS будет подключен к выходу Y. Вход стробирования Е можно использовать только у последнего муль­типлексора DD9. Таким образом, на рис. 16.5 показана схема стробируемого мультиплексора с форматом (64-*1).

Помимо основного назначения коммутации входных сигналов мультиплексо­ры находят применение в сдвигающих устройствах, делителях частоты, триггер-ных устройствах и др.

Демультиплексоры. Демультиплексором (DMX) называют функциональный узел, который обеспечивает передачу цифровой информации, поступающей по одной линии, на несколько выходных линий. Выбор выходной линии осуществляет­ся при помощи сигналов, поступающих на адресные входы. Таким образом, демультиплексор выполняет преобразование, обратное действию мультиплексора.

Обобщенная схема демультиплексора, приведенная на рис. 16.6, сходна со схе­мой мультиплексора. Входной сигнал х поступает на вход коммутатора и через него передается на выходы Yy...Yn. Адресные сигналы Ay...Ai, имеют то же Таблица 16 2 Интегральные микросхемы мультиплексоров

Наименование микросхемы Функциональное назначение Число входов Число разрядов
К155КП1 Стробируемый мультиплексор с инверсным выходом    
К555КП2 Сдвоенный мультиплексор со стробированием    
К155КП7 Стробируемый мультиплексор с прямым и инверсным выходами    
К155КП5 Мультиплексор с прямым выходом    
К555КП11 Четыре стробируемых мультиплексора с тремя состояниями выхода    
К555КП12 Два мультиплексора с тремя состояниями выхода    
К555КП13 Стробируемый мультиплексор с памятью на D-триггерах    
КР531КП15 Мультиплексор с тремя состояниями, прямым и инверсным выходом    
К555КП16 Мультиплексор со стробированием    
К555КП17 Два мультиплексора с тремя состояниями, прямым и инверсным выходами    
К531КП18 Четыре мультиплексора со стробированием и инверсными выходами    
К561КПЗ Двунаправленный мультиплексор со стробированием    
К561КП1 Два двунаправленных мультиплексора со стробированием    

 







Дата добавления: 2015-10-19; просмотров: 3889. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия