Анализ выполнения предпосылок 1МНК
Проверим условия Гаусса—Маркова при помощи инструментария GRETL для данных примера 2.:
1. Нулевая средняя величина (математическое ожидание) остатков, М(ui)=0. Для проверки данного утверждения выберем щелчком мыши ранее созданную переменную RESIDUALS в списке переменных стартового экрана и обратимся к функции View\ Summary Statistics (рисунок 5), в открывшемся окне среднее значение остатков (mean) равна 0.
Рисунок 5 - Общая статистика для переменной RESIDUALS 2. Проверка условия гомоскедастичности остатков: Проверку можно выполнить в окне текущей модели (рисунок 3), для чего в меню следует выбрать Tests\ heteroskedasticity. Окно результатов в этом случае имеет вид, представленный на рисунке 6. Значение P-value = 0, 734603 больше уровня значимости 0,01 свидетельствует о том, что нулевую гипотезу следует принять и условие гомоскедастичности остатков выполняется.
Рисунок 6 - Тест Уайта на гетероскедастичность остатков
3. Отсутствие систематической связи между значениями случайной составляющей ui в любых двух наблюдениях (отсутствие автокорреляции остатков). Определим наличие автокорреляции остатков рассматриваемой модели. Экспортируем ряд значений созданной в Примере 2. переменной Residuals (остатки модели) в файл Residuals.csv (File\Export data\ CSV…, поставив флажок comma (,) в разделе decimal point character). Создадим в файле Residuals.csv новую переменную Residuals1, которая отличается на один лаг от переменной Residuals (длина рядов сокращается на одно наблюдение), затем сохраним файл в формате Residuals.xls. Создадим новый набор данных в Gretl (File\New dataset) и импортируем в него данные из файла Residuals.xls (File\Open Data\Import\Excel), ответив «no» на вопрос о смене типа данных. Рассчитаем коэффициент корреляции между данными переменными, обратившись к функции View\Correlation matrix, выбрав переменные Residuals и Residuals1. Получим коэффициент -0,1488, свидетельствующий о несущественной корреляции (корреляция считается сильной, если ее коэффициент выше |0,6|).
4. Случайная составляющая должна быть распределена независимо от переменных x и y (случайный характер остатков). Для проверки строится график зависимости остатков ui от теоретических значений результативного признака и x. Способом, аналогичным описанному выше, построим парную регрессию ошибки RESIDUALS от модельных значений результативного признака FitsFINAL (рисунок 7). В результате получим нулевое значение коэффициента и единичное значение p-value, а также расположение остатков на графике в виде горизонтальной полосы, что свидетельствует об отсутствии данной зависимости и о случайном характере остатков.
Рисунок 7 - Проверка случайного характера остатков
Проверку зависимости остатков от переменных termgpa и ACT можно осуществить из окна модели final= 10,8+0,339ACT+ 2,87termgpa+u (рисунок 3), построив соответствующие графики Graphs\Residual Plot\Against termgpa (Againts ACT)(рисунок 8, 9). На полученных графиках остатки также расположены в виде горизонтальных полос, что свидетельствует об отсутствии соответствующих зависимостей. Рисунок 8 - График зависимости остатков от переменной termpga
Рисунок 9 - График зависимости остатков от переменной ACT
Из вышесказанного можно установить, что выполняются все предпосылки для применения 1МНК для определения параметров рассматриваемой модели (полученной в примере 2.). Построенная модель final= 10,8+0,339ACT+ 2,87termgpa+u на основе ее проверки по F-критерию Фишера в целом адекватна, и все коэффициенты регрессии значимы (в результате проверки по t -критерию Стьюдента). Такая модель может быть использована для принятия решений и осуществления прогнозов.
|