Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Анализ выполнения предпосылок 1МНК





 

Проверим условия Гаусса—Маркова при помощи инструментария GRETL для данных примера 2.:

 

1. Нулевая средняя величина (математическое ожидание) остатков, М(ui)=0.

Для проверки данного утверждения выберем щелчком мыши ранее созданную переменную RESIDUALS в списке переменных стартового экрана и обратимся к функции View\ Summary Statistics (рисунок 5), в открывшемся окне среднее значение остатков (mean) равна 0.

 

Рисунок 5 - Общая статистика для переменной RESIDUALS

2. Проверка условия гомоскедастичности остатков:

Проверку можно выполнить в окне текущей модели (рисунок 3), для чего в меню следует выбрать Tests\ heteroskedasticity. Окно результатов в этом случае имеет вид, представленный на рисунке 6. Значение P-value = 0, 734603 больше уровня значимости 0,01 свидетельствует о том, что нулевую гипотезу следует принять и условие гомоскедастичности остатков выполняется.

 

Рисунок 6 - Тест Уайта на гетероскедастичность остатков

 

3. Отсутствие систематической связи между значениями случайной составляющей ui в любых двух наблюдениях (отсутствие автокорреляции остатков).

Определим наличие автокорреляции остатков рассматриваемой модели.

Экспортируем ряд значений созданной в Примере 2. переменной Residuals (остатки модели) в файл Residuals.csv (File\Export data\ CSV…, поставив флажок comma (,) в разделе decimal point character). Создадим в файле Residuals.csv новую переменную Residuals1, которая отличается на один лаг от переменной Residuals (длина рядов сокращается на одно наблюдение), затем сохраним файл в формате Residuals.xls. Создадим новый набор данных в Gretl (File\New dataset) и импортируем в него данные из файла Residuals.xls (File\Open Data\Import\Excel), ответив «no» на вопрос о смене типа данных.

Рассчитаем коэффициент корреляции между данными переменными, обратившись к функции View\Correlation matrix, выбрав переменные Residuals и Residuals1. Получим коэффициент -0,1488, свидетельствующий о несущественной корреляции (корреляция считается сильной, если ее коэффициент выше |0,6|).

 

4. Случайная составляющая должна быть распределена независимо от переменных x и y (случайный характер остатков).

Для проверки строится график зависимости остатков ui от теоретических значений результативного признака и x.

Способом, аналогичным описанному выше, построим парную регрессию ошибки RESIDUALS от модельных значений результативного признака FitsFINAL (рисунок 7). В результате получим нулевое значение коэффициента и единичное значение p-value, а также расположение остатков на графике в виде горизонтальной полосы, что свидетельствует об отсутствии данной зависимости и о случайном характере остатков.

 

 

 

Рисунок 7 - Проверка случайного характера остатков

 

Проверку зависимости остатков от переменных termgpa и ACT можно осуществить из окна модели final= 10,8+0,339ACT+ 2,87termgpa+u (рисунок 3), построив соответствующие графики Graphs\Residual Plot\Against termgpa (Againts ACT)(рисунок 8, 9). На полученных графиках остатки также расположены в виде горизонтальных полос, что свидетельствует об отсутствии соответствующих зависимостей.

Рисунок 8 - График зависимости остатков от переменной termpga

 

Рисунок 9 - График зависимости остатков от переменной ACT

 

Из вышесказанного можно установить, что выполняются все предпосылки для применения 1МНК для определения параметров рассматриваемой модели (полученной в примере 2.). Построенная модель final= 10,8+0,339ACT+ 2,87termgpa+u на основе ее проверки по F-критерию Фишера в целом адекватна, и все коэффициенты регрессии значимы (в результате проверки по t -критерию Стьюдента). Такая модель может быть использована для принятия решений и осуществления прогнозов.







Дата добавления: 2015-10-19; просмотров: 904. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия