Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Анализ выполнения предпосылок 1МНК





 

Проверим условия Гаусса—Маркова при помощи инструментария GRETL для данных примера 2.:

 

1. Нулевая средняя величина (математическое ожидание) остатков, М(ui)=0.

Для проверки данного утверждения выберем щелчком мыши ранее созданную переменную RESIDUALS в списке переменных стартового экрана и обратимся к функции View\ Summary Statistics (рисунок 5), в открывшемся окне среднее значение остатков (mean) равна 0.

 

Рисунок 5 - Общая статистика для переменной RESIDUALS

2. Проверка условия гомоскедастичности остатков:

Проверку можно выполнить в окне текущей модели (рисунок 3), для чего в меню следует выбрать Tests\ heteroskedasticity. Окно результатов в этом случае имеет вид, представленный на рисунке 6. Значение P-value = 0, 734603 больше уровня значимости 0,01 свидетельствует о том, что нулевую гипотезу следует принять и условие гомоскедастичности остатков выполняется.

 

Рисунок 6 - Тест Уайта на гетероскедастичность остатков

 

3. Отсутствие систематической связи между значениями случайной составляющей ui в любых двух наблюдениях (отсутствие автокорреляции остатков).

Определим наличие автокорреляции остатков рассматриваемой модели.

Экспортируем ряд значений созданной в Примере 2. переменной Residuals (остатки модели) в файл Residuals.csv (File\Export data\ CSV…, поставив флажок comma (,) в разделе decimal point character). Создадим в файле Residuals.csv новую переменную Residuals1, которая отличается на один лаг от переменной Residuals (длина рядов сокращается на одно наблюдение), затем сохраним файл в формате Residuals.xls. Создадим новый набор данных в Gretl (File\New dataset) и импортируем в него данные из файла Residuals.xls (File\Open Data\Import\Excel), ответив «no» на вопрос о смене типа данных.

Рассчитаем коэффициент корреляции между данными переменными, обратившись к функции View\Correlation matrix, выбрав переменные Residuals и Residuals1. Получим коэффициент -0,1488, свидетельствующий о несущественной корреляции (корреляция считается сильной, если ее коэффициент выше |0,6|).

 

4. Случайная составляющая должна быть распределена независимо от переменных x и y (случайный характер остатков).

Для проверки строится график зависимости остатков ui от теоретических значений результативного признака и x.

Способом, аналогичным описанному выше, построим парную регрессию ошибки RESIDUALS от модельных значений результативного признака FitsFINAL (рисунок 7). В результате получим нулевое значение коэффициента и единичное значение p-value, а также расположение остатков на графике в виде горизонтальной полосы, что свидетельствует об отсутствии данной зависимости и о случайном характере остатков.

 

 

 

Рисунок 7 - Проверка случайного характера остатков

 

Проверку зависимости остатков от переменных termgpa и ACT можно осуществить из окна модели final= 10,8+0,339ACT+ 2,87termgpa+u (рисунок 3), построив соответствующие графики Graphs\Residual Plot\Against termgpa (Againts ACT)(рисунок 8, 9). На полученных графиках остатки также расположены в виде горизонтальных полос, что свидетельствует об отсутствии соответствующих зависимостей.

Рисунок 8 - График зависимости остатков от переменной termpga

 

Рисунок 9 - График зависимости остатков от переменной ACT

 

Из вышесказанного можно установить, что выполняются все предпосылки для применения 1МНК для определения параметров рассматриваемой модели (полученной в примере 2.). Построенная модель final= 10,8+0,339ACT+ 2,87termgpa+u на основе ее проверки по F-критерию Фишера в целом адекватна, и все коэффициенты регрессии значимы (в результате проверки по t -критерию Стьюдента). Такая модель может быть использована для принятия решений и осуществления прогнозов.







Дата добавления: 2015-10-19; просмотров: 904. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия