Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Анализ выполнения предпосылок 1МНК





 

Проверим условия Гаусса—Маркова при помощи инструментария GRETL для данных примера 2.:

 

1. Нулевая средняя величина (математическое ожидание) остатков, М(ui)=0.

Для проверки данного утверждения выберем щелчком мыши ранее созданную переменную RESIDUALS в списке переменных стартового экрана и обратимся к функции View\ Summary Statistics (рисунок 5), в открывшемся окне среднее значение остатков (mean) равна 0.

 

Рисунок 5 - Общая статистика для переменной RESIDUALS

2. Проверка условия гомоскедастичности остатков:

Проверку можно выполнить в окне текущей модели (рисунок 3), для чего в меню следует выбрать Tests\ heteroskedasticity. Окно результатов в этом случае имеет вид, представленный на рисунке 6. Значение P-value = 0, 734603 больше уровня значимости 0,01 свидетельствует о том, что нулевую гипотезу следует принять и условие гомоскедастичности остатков выполняется.

 

Рисунок 6 - Тест Уайта на гетероскедастичность остатков

 

3. Отсутствие систематической связи между значениями случайной составляющей ui в любых двух наблюдениях (отсутствие автокорреляции остатков).

Определим наличие автокорреляции остатков рассматриваемой модели.

Экспортируем ряд значений созданной в Примере 2. переменной Residuals (остатки модели) в файл Residuals.csv (File\Export data\ CSV…, поставив флажок comma (,) в разделе decimal point character). Создадим в файле Residuals.csv новую переменную Residuals1, которая отличается на один лаг от переменной Residuals (длина рядов сокращается на одно наблюдение), затем сохраним файл в формате Residuals.xls. Создадим новый набор данных в Gretl (File\New dataset) и импортируем в него данные из файла Residuals.xls (File\Open Data\Import\Excel), ответив «no» на вопрос о смене типа данных.

Рассчитаем коэффициент корреляции между данными переменными, обратившись к функции View\Correlation matrix, выбрав переменные Residuals и Residuals1. Получим коэффициент -0,1488, свидетельствующий о несущественной корреляции (корреляция считается сильной, если ее коэффициент выше |0,6|).

 

4. Случайная составляющая должна быть распределена независимо от переменных x и y (случайный характер остатков).

Для проверки строится график зависимости остатков ui от теоретических значений результативного признака и x.

Способом, аналогичным описанному выше, построим парную регрессию ошибки RESIDUALS от модельных значений результативного признака FitsFINAL (рисунок 7). В результате получим нулевое значение коэффициента и единичное значение p-value, а также расположение остатков на графике в виде горизонтальной полосы, что свидетельствует об отсутствии данной зависимости и о случайном характере остатков.

 

 

 

Рисунок 7 - Проверка случайного характера остатков

 

Проверку зависимости остатков от переменных termgpa и ACT можно осуществить из окна модели final= 10,8+0,339ACT+ 2,87termgpa+u (рисунок 3), построив соответствующие графики Graphs\Residual Plot\Against termgpa (Againts ACT)(рисунок 8, 9). На полученных графиках остатки также расположены в виде горизонтальных полос, что свидетельствует об отсутствии соответствующих зависимостей.

Рисунок 8 - График зависимости остатков от переменной termpga

 

Рисунок 9 - График зависимости остатков от переменной ACT

 

Из вышесказанного можно установить, что выполняются все предпосылки для применения 1МНК для определения параметров рассматриваемой модели (полученной в примере 2.). Построенная модель final= 10,8+0,339ACT+ 2,87termgpa+u на основе ее проверки по F-критерию Фишера в целом адекватна, и все коэффициенты регрессии значимы (в результате проверки по t -критерию Стьюдента). Такая модель может быть использована для принятия решений и осуществления прогнозов.







Дата добавления: 2015-10-19; просмотров: 904. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия