Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Приложение А. Код программы на языке Java SE.





package main;

 

import java.awt.Color;

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

import static java.lang.Math.exp;

import static java.lang.Math.sqrt;

import java.util.Random;

import org.jfree.chart.ChartFactory;

import org.jfree.chart.ChartFrame;

import org.jfree.chart.JFreeChart;

import org.jfree.chart.plot.PlotOrientation;

import org.jfree.chart.plot.XYPlot;

import org.jfree.chart.renderer.xy.XYLineAndShapeRenderer;

import org.jfree.data.xy.XYDataset;

import org.jfree.data.xy.XYSeries;

import org.jfree.data.xy.XYSeriesCollection;

 

public class Main {

 

private static void plotSP(double[] arr, double MX, double DX) {

 

XYSeries seriesSP = new XYSeries("СП", true, true);

XYSeries seriesMX = new XYSeries("MX", true, true);

XYSeries seriesSKO = new XYSeries("СКО", true, true);

XYSeries series_SKO = new XYSeries("-СКО", true, true);

 

for (int i = 0; i < 200; i++) {

seriesSP.add(i, arr[i]);

}

seriesMX.add(0, MX);

seriesMX.add(200, MX);

 

seriesSKO.add(0, MX + sqrt(DX));

seriesSKO.add(200, MX + sqrt(DX));

 

series_SKO.add(0, MX - sqrt(DX));

series_SKO.add(200, MX - sqrt(DX));

 

XYSeriesCollection collection = new XYSeriesCollection();

collection.addSeries(seriesSP);

collection.addSeries(seriesMX);

collection.addSeries(seriesSKO);

collection.addSeries(series_SKO);

 

XYDataset dataset = collection;

XYLineAndShapeRenderer r1 = new XYLineAndShapeRenderer();

 

r1.setSeriesPaint(0, Color.red);

r1.setSeriesPaint(1, Color.GREEN);

r1.setSeriesPaint(2, Color.BLUE);

r1.setSeriesPaint(3, Color.BLUE);

 

r1.setSeriesShapesVisible(0, false);

r1.setSeriesShapesVisible(1, false);

r1.setSeriesShapesVisible(2, false);

r1.setSeriesShapesVisible(3, false);

 

r1.setSeriesVisibleInLegend(3, false);

 

JFreeChart chart = ChartFactory.createXYLineChart("График СП", "Index", "Value", null);

 

XYPlot plot = (XYPlot) chart.getPlot();

 

plot.setDataset(0, dataset);

plot.setRenderer(0, r1);

 

plot.mapDatasetToRangeAxis(0, 0); //xz

plot.setBackgroundPaint(Color.LIGHT_GRAY);

plot.setDomainGridlinePaint(Color.WHITE);

plot.setRangeGridlinePaint(Color.WHITE);

 

ChartFrame frame = new ChartFrame("График", chart);

frame.pack();

frame.setVisible(true);

}

 

public static void plotR(double[] arr) {

XYSeries series = new XYSeries("r(m)", true, true);

XYSeries series_E = new XYSeries("+1/e,-1/e", true, true);

XYSeries seriesE = new XYSeries("1/e", true, true);

for (int i = 0; i < arr.length; i++) {

series.add(i, arr[i]);

}

series_E.add(0, -exp(-1));

series_E.add(15, -exp(-1));

 

seriesE.add(0, exp(-1));

seriesE.add(15, exp(-1));

 

XYSeriesCollection collection = new XYSeriesCollection();

collection.addSeries(series);

collection.addSeries(series_E);

collection.addSeries(seriesE);

 

JFreeChart chart = ChartFactory.createXYLineChart("Оценка НКФ исходного СП", "m", "r(m)", collection,

PlotOrientation.VERTICAL, true, true, false);

XYDataset dataset = collection;

XYLineAndShapeRenderer r1 = new XYLineAndShapeRenderer();

 

r1.setSeriesPaint(0, Color.red);

r1.setSeriesPaint(1, Color.BLUE);

r1.setSeriesPaint(2, Color.BLUE);

 

r1.setSeriesShapesVisible(0, false);

r1.setSeriesShapesVisible(1, false);

r1.setSeriesShapesVisible(2, false);

 

r1.setSeriesVisibleInLegend(2, false);

 

XYPlot plot = (XYPlot) chart.getPlot();

 

plot.setDataset(0, dataset);

plot.setRenderer(0, r1);

 

plot.mapDatasetToRangeAxis(0, 0); //xz

plot.setBackgroundPaint(Color.LIGHT_GRAY);

plot.setDomainGridlinePaint(Color.WHITE);

plot.setRangeGridlinePaint(Color.WHITE);

 

//Создание окна вывода

ChartFrame frame = new ChartFrame("НКФ", chart);

frame.pack();

frame.setVisible(true);

}

 

/**

* График для сравнения выборочной, теоретической и смоделированой НКФ.

*

* @param arr1 выборочная НКФ

* @param arr2 теоретическа НКФ

* @param arr3 смоделированная НКФ

* @param str Название модели (AR(2), MA(0), ARMA(2,3))

*/

public static void plotAll_R(double[] arr1, double[] arr2, double[] arr3, String str) {

XYSeries seriesArr1 = new XYSeries("исходная НКФ", true, true);

XYSeries seriesArr2 = new XYSeries("теоретическая НКФ", true, true);

XYSeries seriesArr3 = new XYSeries(str, true, true);

 

for (int i = 0; i < arr1.length; i++) {

seriesArr1.add(i, arr1[i]);

}

for (int i = 0; i < arr2.length; i++) {

seriesArr2.add(i, arr2[i]);

}

for (int i = 0; i < arr3.length; i++) {

seriesArr3.add(i, arr3[i]);

}

 

XYSeriesCollection collection = new XYSeriesCollection();

collection.addSeries(seriesArr1);

collection.addSeries(seriesArr2);

collection.addSeries(seriesArr3);

 

JFreeChart chart = ChartFactory.createXYLineChart("НКФ модели " + str, "m", "r(m)", collection,

PlotOrientation.VERTICAL, true, true, false);

XYDataset dataset = collection;

XYLineAndShapeRenderer r1 = new XYLineAndShapeRenderer();

 

r1.setSeriesPaint(0, Color.RED);

r1.setSeriesPaint(1, Color.BLUE);

r1.setSeriesPaint(2, Color.YELLOW);

 

r1.setSeriesShapesVisible(0, false);

r1.setSeriesShapesVisible(1, false);

r1.setSeriesShapesVisible(2, false);

 

XYPlot plot = (XYPlot) chart.getPlot();

 

plot.setDataset(0, dataset);

plot.setRenderer(0, r1);

 

plot.mapDatasetToRangeAxis(0, 0); //xz

plot.setBackgroundPaint(Color.LIGHT_GRAY);

plot.setDomainGridlinePaint(Color.WHITE);

plot.setRangeGridlinePaint(Color.WHITE);

 

//Создание окна вывода

ChartFrame frame = new ChartFrame("НКФ", chart);

frame.pack();

frame.setVisible(true);

}

 

/**

* Метод, подсчитывающий и выводящий на консоль первые 10 теоретических

* значений НКФ для данной модели АРСС(M,N) А также погрешность e^2 для

* данной модели

*

* @param M параметр М для модели ARMA(M,N)

* @param N параметр N для модели ARMA(M,N)

* @param rOld выборочная НКФ

* @param betas коэффициенты betas

*/

public static void eps2(int M, int N, double[] rOld, double[] betas) {

double[] rNew = new double[16];

double tmpSum = 0;

double eps2 = 0;

int m = 0;

 

while (m < N + M + 1) {

rNew[m] = rOld[m];

m++;

}

for (int i = m; i < 16; i++) {

for (int j = 0; j < M; j++) { //считаем значения НКФ

tmpSum += betas[j] * rNew[i - j];

}

rNew[i] = tmpSum;

}

System.out.println("ARRRRRRRRRRR");

for (int i = 1; i < 11; i++) {

System.out.println(rNew[i]);

}

 

System.out.println("");

for (int i = 1; i < 11; i++) {

eps2 += Math.pow(rNew[i] - rOld[i], 2);

}

System.out.println("Погрешность: " + eps2);

rNew = null;

}

 

public static double rand() {

Random randR = new Random(); //объекты будут создаваться при выхове статического метода?

double sum = -6;

for (int i = 0; i < 11; i++) {

sum += randR.nextDouble();//генерирует случайное число [0,1]

}

return sum;

}

 

/**

* Подсчет моментных функций:

*

* среднее по выборке макс мин диссперсия корреляционная функция нкф радиус

* корреляции

*

* + 2 графика СП НКФ

*

* @param array выборка

* @param str Заголовок: "Моментные функциии для +str"

*/

public static double[] momentsFunction(double[] array, String str) {

//среднее по выборке

double x_ = 0; //среднее

double current = 0;

double max = 0;

double min = 0;

double disp = 0;

double[] r = new double[16]; //КФ

double[] r_ = new double[16]; //НКФ

 

for (int i = 0; i < array.length; i++) {

current = array[i];

if (current > max) {

max = current;

} else if (current < min) {

min = current;

}

x_ += current;

}

x_ /= array.length;

x_ = Math.round(x_ * 10000);

x_ /= 10000;

System.out.println("Моментные функциии для " + str);

System.out.println("Среднее по выборке: " + x_);

System.out.println("Максимальное значение в выборке: " + max);

System.out.println("Минимальное значение в выборке: " + min);

 

//Выборочная не смещенная диссперсия

for (int i = 0; i < array.length; i++) {

disp += (array[i] - x_) * (array[i] - x_);

}

disp /= array.length;

disp = Math.round(disp * 10000);

disp /= 10000;

System.out.println("Выборочная диссперсия: " + disp);

 

//Корреляционная функция для k=0,1,2,3,4,5,6,7,8,9,10,11,12,13,14.

System.out.println("Корреляционная функция:");

for (int k = 0; k < r.length; k++) {

for (int i = 0; i < array.length - k; i++) {

r[k] += (array[i] - x_) * (array[i + k] - x_);

}

 

r[k] /= (array.length - k);

r[k] = Math.round(r[k] * 10000);

r[k] /= 10000;

System.out.println(r[k]);

}

//НКФ

System.out.println("Нормированая корреляционная функция:");

int radius = 0;

for (int k = 0; k < r_.length; k++) {

 

r_[k] = r[k] / disp;

r_[k] = Math.round(r_[k] * 10000);

r_[k] /= 10000;

System.out.println(r_[k]);

if ((r_[k] >= (1 / Math.E)) || (r_[k] <= -(1 / Math.E))) {

radius = k;

}

}

 

System.out.println("Радиус корреляции: " + ++radius);

 

if ("исходной выборки".equals(str)) {

plotSP(array, x_, disp);

plotR(r_);

}

return r_;

}

 

public static double[] tehorNKF_MA0(double[] r_) {

// теоретические НКФ

double[] MA0 = new double[16];

double[] betas1 = {0};

double eps = 0;

MA0[0] = 1.000;

System.out.println("Теоретичесая НКФ MA(0):");

for (int i = 1; i < 16; i++) {

MA0[i] = 0;

}

for (int i = 1; i < 11; i++) {

System.out.println(0);

}

for (int i = 1; i < 11; i++) {//погрешности первых 10 погрешностей, начиная с индекса 1.

eps += Math.pow(MA0[i] - r_[i], 2);

}

System.out.println("Погрешность: " + eps);

System.out.println("");

return MA0;

}

 

public static double[] tehorNKF_AR2(double[] r_) {

// теоретические НКФ

double[] betas2 = {1.0425, -0.7726};

double[] AR2 = new double[16];

double eps = 0;

AR2[0] = 1.0000;

AR2[1] = 0.5881;

AR2[2] = -0.1595;

System.out.println("Теоретическая НКФ AR(2):");

for (int i = 3; i < 16; i++) {

AR2[i] = AR2[i - 1] * betas2[0] + AR2[i - 2] * betas2[1];

}

for (int i = 1; i < 11; i++) {//выписываем первые 10 значений

System.out.println(AR2[i]);

}

for (int i = 1; i < 11; i++) {//погрешности первых 10 погрешностей, начиная с индекса 1.

eps += Math.pow(AR2[i] - r_[i], 2);

}

System.out.println("Погрешность: " + eps);

System.out.println("");

return AR2;

}

 

public static double[] tehorNKF_ARMA23(double[] r_) {

// теоретические НКФ

double[] betas2 = {0.9444, -0.883};

double[] ARMA23 = new double[16];

double eps = 0;

ARMA23[0] = 1.0000;

ARMA23[1] = 0.5881;

ARMA23[2] = -0.1595;

System.out.println("Теоретичесая НКФ ARMA(2,3):");

for (int i = 3; i < 16; i++) {

ARMA23[i] = ARMA23[i - 1] * betas2[0] + ARMA23[i - 2] * betas2[1];

}

for (int i = 1; i < 11; i++) {

System.out.println(ARMA23[i]);

}

for (int i = 1; i < 11; i++) {//погрешности первых 10 погрешностей, начиная с индекса 1.

eps += Math.pow(ARMA23[i] - r_[i], 2);

}

System.out.println("Погрешность: " + eps);

System.out.println("");

return ARMA23;

}

 

public static double[] model_AR2() {

//Моделирование СП для модели АР(2)

double[] AR2 = new double[6000];

double[] riliAR2 = new double[5000];

 

AR2[0] = 49.947 + 10.5326 * rand();

AR2[1] = 49.947 + 1.0425 * AR2[0] + 10.5326 * rand();

AR2[2] = 49.947 + 1.0425 * AR2[1] - 0.7726 * AR2[0] + 10.5326 * rand();

for (int i = 3; i < 1000; i++) { //в холостую

AR2[i] = 49.947 + 1.0425 * AR2[i - 1] - 0.7726 * AR2[i - 2] + 10.5326 * rand();

}

for (int i = 1000; i < 6000; i++) {//рили

AR2[i] = 49.947 + 1.0425 * AR2[i - 1] - 0.7726 * AR2[i - 2] + 10.5326 * rand();

riliAR2[i - 1000] = AR2[i];

}

return riliAR2;

}

 

public static double[] model_MA0() {

double[] MA0 = new double[6000];

double[] riliMA0 = new double[5000];

//PrintWriter pwMA0 = new PrintWriter(new File("C:\\Users\\User\\Desktop\\MA0.txt"));

for (int i = 0; i < 1000; i++) { //в холостую

MA0[i] = 49.947 + 20.5136 * rand();

}

for (int i = 1000; i < 6000; i++) {//рили

MA0[i] = 49.947 + 20.5136 * rand();

riliMA0[i - 1000] = MA0[i];

}

return riliMA0;

}

 

public static double[] model_ARMA23() {

double[] ARMA23 = new double[6000];

double[] riliARMA23 = new double[5000];

double t0 = rand();

double t1 = rand();

double t2 = rand();

double t3 = rand();

 

ARMA23[0] = 49.947 - 4.8714 * t0;

ARMA23[1] = 49.947 + 0.9444 * ARMA23[0] - 4.8714 * t1 - 1.2166 * t0;

ARMA23[2] = 49.947 + 0.9444 * ARMA23[1] - 0.883 * ARMA23[0] - 4.8714 * t2 + 1.2166 * t1 - 12.5896 * t0;

ARMA23[3] = 49.947 + 0.9444 * ARMA23[2] - 0.883 * ARMA23[1] - 4.8714 * t3 + 1.2166 * t2 - 12.5896 * t1 - 2.7796 * t0;

 

for (int i = 4; i < 1000; i++) { //в холостую

t0 = t1;

t1 = t2;

t2 = t3;

t3 = rand();

ARMA23[i] = 49.947 + 0.9444 * ARMA23[i - 1] - 0.883 * ARMA23[i - 2] - 4.8714 * t3 + 1.2166 * t2 - 12.5896 * t1 - 2.7796 * t0;

}

for (int i = 1000; i < 6000; i++)

t0 = t1;

t1 = t2;

t2 = t3;

t3 = rand();

ARMA23[i] = 49.947 + 0.9444 * ARMA23[i - 1] - 0.883 * ARMA23[i - 2] - 4.8714 * t3 + 1.2166 * t2 - 12.5896 * t1 - 2.7796 * t0;

riliARMA23[i - 1000] = ARMA23[i];

}

return riliARMA23;

}

 

public static void main(String[] args) throws IOException {

BufferedReader in = new BufferedReader(new FileReader("C:\\Users\\User\\Desktop\\Учёба\\Математика\\ТСП\\Курсач\\input.txt"));

String tmp = null;

int c = 0;

double current = 0, eps = 0;

double[] array = new double[5000];//выборка

double[] r_ = new double[16]; //НКФ

 

while ((tmp = in.readLine())!= null) {

current = Double.parseDouble(tmp);

array[c++] = current;

}

System.out.println("********************************************");

r_ = momentsFunction(array, "исходной выборки");//выводим моментные функции для исходной выбрки

System.out.println("********************************************\n\n\n");

in.close();

 

//теоретические НКФ и их погрешности для лучших моделей AR(2),MA(0),ARMA(3)

double[] teorAR2 = new double[10];

double[] teorMA0 = new double[10];

double[] teorARMA23 = new double[10];

 

System.out.println("********************************************");

teorAR2 = tehorNKF_AR2(r_);

teorMA0 = tehorNKF_MA0(r_);

teorARMA23 = tehorNKF_ARMA23(r_);

System.out.println("********************************************\n\n\n");

 

//Моделирование моделей

double[] arrayAR2 = new double[5000];

double[] arrayMA0 = new double[5000];

double[] arrayARMA23 = new double[5000];

arrayAR2 = model_AR2();//смоделированные СП для лучших моделей

arrayMA0 = model_MA0();

arrayARMA23 = model_ARMA23();

//Анализ моделей

double[] r_AR2 = new double[16];

double[] r_MA0 = new double[16];

double[] r_ARMA23 = new double[16];

System.out.println("********************************************");

r_AR2 = momentsFunction(arrayAR2, "AR(2)");//выводим моментные функции для смоделированных моделей и сохраняем нкф каждой модели

for (int i = 1; i < 11; i++) {//погрешности первых 10 погрешностей, начиная с индекса 1.

eps += Math.pow(r_AR2[i] - r_[i], 2);

}

System.out.println("Погрешность: " + eps);

eps = 0;

System.out.println();

r_MA0 = momentsFunction(arrayMA0, "MA(0)");

for (int i = 1; i < 11; i++) {//погрешности первых 10 погрешностей, начиная с индекса 1.

eps += Math.pow(r_MA0[i] - r_[i], 2);

}

System.out.println("Погрешность: " + eps);

eps = 0;

System.out.println();

r_ARMA23 = momentsFunction(arrayARMA23, "ARMA(2,3)");

for (int i = 1; i < 11; i++) {//погрешности первых 10 погрешностей, начиная с индекса 1.

eps += Math.pow(r_ARMA23[i] - r_[i], 2);

}

System.out.println("Погрешность: " + eps);

eps = 0;

System.out.println("********************************************\n\n\n");

//Графики НКФ для лучших моделей

plotAll_R(r_, teorAR2, r_AR2, "AR(2)");

plotAll_R(r_, teorMA0, r_MA0, "MA(0)");

plotAll_R(r_, teorARMA23, r_ARMA23, "ARMA(2,3)");

 

//График выборки смоделированной СП

plotSP(arrayARMA23, 63.4437, 732.1111);

}

}







Дата добавления: 2015-10-19; просмотров: 382. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия