Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линейные решающие правила





Само название говорит о том, что граница, разделяющая в признаковом пространстве области различных образов, описывается линейной функцией (рис. 4)

= .

 

 
 

 

 


Рис. 4. Линейное решающее правило для распознавания
двух образов

Одна граница при этом разделяет области двух образов. Если >2, то требуется несколько линейных функций и граница является, вообще говоря, кусочно линейной. Для наглядности будем считать =2. Если на множестве объектов выполняется условие

,

если – реализация первого образа ,

если – реализация второго образа ,

то образы и называют линейно разделимыми.

Существуют различные методы построения линейных решающих правил. Рассмотрим один из них, реализованный в 50-х годах Розенблатом, в устройствах распознавания изображений, названных персептронами (рис. 5).

Пусть

если , , если ,

где – некоторый объект одного из образов, .

 

 

 

 


Рис. 5. Упрощённая схема однослойного персептрона

Выбор осуществляется пошаговым образом. Текущее значение заменяется новым после предъявления персептрону очередного объекта обучающей выборки. Эта корректировка производится по следующему правилу:

1. , если и или если и .

2. , если и , .

3. , если и .

Это правило вполне логично. Если очередной объект системой классифицирован правильно, то нет оснований изменять . В случае (2) следует изменить так, чтобы увеличить . Предложенное правило удовлетворяет этому требованию. Действительно,

.

Соответственно в случае (3) .

Важное значение имеет выбор . Можно, в частности, выбрать . При этом показано, что если обучающие выборки двух образов линейно разделимы, то описанная пошаговая процедура сходится, то есть будут найдены значения , при которых

, если ,

, если .

Если же выборки линейно неразделимы (рис. 6), то сходимость отсутствует и оценку , минимизирующую число неправильных распознаваний, находят методом стохастической аппроксимации.







Дата добавления: 2015-10-18; просмотров: 873. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия