Студопедия — S и G2 непосредственно связаны с митозом, поэтому их иногда выделяют в отдельный период — препрофазу.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

S и G2 непосредственно связаны с митозом, поэтому их иногда выделяют в отдельный период — препрофазу.






После этого наступает собственно митоз, который состоит из четырех фаз. Процесс деления включает в себя несколько последовательных фаз и представляет собой цикл. Его продолжительность различна и составляет у большинства клеток от 10 до 50 ч. При этом у клеток тела человека продолжительность самого митоза составляет 1—1,5 ч, G2-периода интерфазы — 2—3 ч, S-периода интерфазы — 6—10 ч.

Биологическое значение митоза

· Митоз лежит в основе роста и вегетативного размножения всех организмов, имеющих ядро - эукариот.

· Благодаря митозу поддерживается постоянство числа хромосом в клеточных поколениях, т.е. дочерние клетки получают такую же генетическую информацию, которая содержалась в ядре материнской клетки.

· Митоз обусловливает важнейшие явления жизнедеятельности: рост, развитие и восстановление тканей и органов и бесполое размножение организмов.

· Бесполое размножение, регенерация утраченных частей, замещение клеток у многоклеточных организмов

Генетическая стабильность — обеспечивает стабильность кариотипа соматических клеток в течение жизни одного поколения (т. е. в течение всей жизни организма.

29. Мейотическое деление, его особенности, характеристика стадий профазы 1.

Центральным событием гаметогенеза является особая форма клеточного деления — мейоз. В отличие от широко распространенного митоза, сохраняющего в клетках постоянное диплоидное число хромосом, мейоз приводит к образованию из диплоидных клеток гаплоидных гамет. При последующем оплодотворении гаметы формируют организм нового поколения с диплоидным кариотипом (пс + пс == 2n2c). В этом заключается важнейшее биологическое значение мейоза, который возник и закрепился в процессе эволюции у всех видов, размножающихся половьм путем.

Мейоз состоит из двух быстро следующих одно за другим делений, происходящих в периоде созревания. Удвоение ДНК для этих делений осуществляется однократно в периоде роста. Второе деление мейоза следует за первым практически сразу так, что наследственный материал не синтезируется в промежутке между ними (рис. 5.5).

Первое мейотическое деление называют редукционным, так как оно приводит к образованию из диплоидных клеток (2п2с) гаплоидных клеток п2с. Такой результат обеспечивается благодаря особенностям профазы первого деления мейоза. В профазе I мейоза, так же как в обычном митозе, наблюдается компактная упаковка генетического материала (спирализация хромосом). Одновременно происходит событие, отсутствующее в митозе: гомологичные хромосомы конъюгируют друг с другом, т.е. тесно сближаются соответствующими участками.

В результате конъюгации образуются хромосомные пары, или биваленты, числом п. Так как каждая хромосома, вступающая в мейоз, состоит из двух хроматид, то бивалент содержит четыре хроматиды. Формула генетического материала в профазе I остается 2n4c. К концу профазы хромосомы в бивалентах, сильно спирализуясь, укорачиваются. Так же как в митозе, в профазе I мейоза начинается формирование веретена деления, с помощью которого хромосомный материал будет распределяться между дочерними клетками (рис. 5.5).

Процессы, происходящие в профазе I мейоза и определяющие его результаты, обусловливают более продолжительное течение этой фазы деления по сравнению с митозом и дают возможность выделить несколько стадий в ее пределах.

Лептотена —наиболее ранняя стадия профазы I мейоза, в которой начинается спирализация хромосом, и они становятся видимыми в микроскоп как длинные и тонкие нити.

Зиготена характеризуется началом конъюгации гомологичных хромосом, которые объединяются синаптонемальным комплексом в бивалент (рис. 5.6).

Пахитена — стадия, в которой на фоне продолжающейся спирализации хромосом и их укорочения, между гомологичными хромосомами осуществляется кроссинговер — перекрест с обменом соответствующими участками.

Диплотена характеризуется возникновением сил отталкивания между гомологичными хромосомами, которые начинают отдаляться друг от друга в первую очередь в области центромер, но остаются связанными в областях прошедшего кроссинговера — хиазмах (рис. 5.7).

Диакинез — завершающая стадия профазы I мейоза, в которой гомологичные хромосомы удерживаются вместе лишь в отдельных точках хиазм. Биваленты приобретают причудливую форму колец, крестов, восьмерок и т.д. (рис. 5.8).

Таким образом, несмотря на возникающие между гомологичными хромосомами силы отталкивания, в профазе I не происходит окончательного разрушения бивалентов. Особенностью мейоза в овогенезе является наличие специальной стадии — диктиотены, отсутствующей в сперматогенезе. На этой стадии, достигаемой у человека еще в эмбриогенезе, хромосомы, приняв особую морфологическую форму «ламповых щеток», прекращают какие-либо дальнейшие структурные изменения на многие годы. По достижении женским организмом репродуктивного возраста под влиянием лютеинизирующего гормона гипофиза, как правило, один овоцит ежемесячно возобновляет мейоз.

ОСОБЕННОСТИ

МЕЙОЗ

Половое размножение организмов осуществляется с помощью специализированных клеток, т.н. гамет, – яйцеклетки (яйца) и спермия (сперматозоида). Гаметы, сливаясь, образуют одну клетку – зиготу. Каждая гамета гаплоидна, т.е. имеет по одному набору хромосом. Внутри набора все хромосомы разные, однако каждой хромосоме яйцеклетки соответствует одна из хромосом спермия. Зигота, таким образом, содержит уже пару таких соответствующих друг другу хромосом, которые называют гомологичными. Гомологичные хромосомы сходны, поскольку имеют одни и те же гены или их варианты (аллели), определяющие специфические признаки. Например, одна из парных хромосом может иметь ген, кодирующий группу крови А, а другая – его вариант, кодирующий группу крови В.

Хромосомы зиготы, происходящие из яйцеклетки, являются материнскими, а происходящие из спермия – отцовскими.

В результате многократных митотических делений из образовавшейся зиготы возникает либо многоклеточный организм, либо многочисленные свободноживущие клетки, как это происходит у обладающих половым размножением простейших и у одноклеточных водорослей.

При образовании гамет диплоидный набор хромосом, имевшийся у зиготы, должен наполовину уменьшиться (редуцироваться). Если бы этого не происходило, то в каждом поколении слияние гамет приводило бы к удвоению набора хромосом. Редукция до гаплоидного числа хромосом происходит в результате редукционного деления – т.н. мейоза, который представляет собой вариант митоза.

Расщепление и рекомбинация.Особенность мейоза состоит в том, что при клеточном делении экваториальную пластинку образуют пары гомологичных хромосом, а не удвоенные индивидуальные хромосомы, как при митозе. Парные хромосомы, каждая из которых осталась одинарной, расходятся к противоположным полюсам клетки, клетка делится, и в результате дочерние клетки получают половинный, по сравнению с зиготой, набор хромосом.

Для примера предположим, что гаплоидный набор состоит из двух хромосом. В зиготе (и соответственно во всех клетках организма, продуцирующего гаметы) присутствуют материнские хромосомы А и В и отцовские А' и В'. Во время мейоза они могут разделиться следующим образом:

Наиболее важен в этом примере тот факт, что при расхождении хромосом вовсе не обязательно образуется исходный материнский и отцовский набор,а возможна рекомбинация генов,

Теперь предположим, что пара хромосом АА' содержит два аллеля – a и b – гена, определяющего группы крови А и В. Сходным образом пара хромосом ВВ' содержит аллели m и n другого гена, определяющего группы крови M и N. Разделение этих аллелей может идти следующим образом: Очевидно, что получившиеся гаметы могут содержать любую из следующих комбинаций аллелей двух генов: am, bn, bm или an.

Если имеется большее число хромосом, то пары аллелей будут расщепляться независимо по тому же принципу. Это означает, что одни и те же зиготы могут продуцировать гаметы с различными комбинациями аллелей генов и давать начало разным генотипам в потомстве.

Мейотическое деление.Оба приведенных примера иллюстрируют принцип мейоза. На самом деле мейоз – значительно более сложный процесс, так как включает два последовательных деления. Главное в мейозе то, что хромосомы удваиваются только один раз, тогда как клетка делится дважды, в результате чего происходит редукция числа хромосом и диплоидный набор превращается в гаплоидный.

Во время профазы первого деления гомологичные хромосомы конъюгируют, т. е. сближаются попарно. В результате этого очень точного процесса каждый ген оказывается напротив своего гомолога на другой хромосоме. Обе хромосомы затем удваиваются, но хроматиды остаются связанными одна с другой общей центромерой. В метафазе четыре соединенные хроматиды выстраиваются, образуя экваториальную пластинку, как если бы они были одной удвоенной хромосомой. В противоположность тому, что происходит при митозе, центромеры не делятся. В результате каждая дочерняя клетка получает пару хроматид, все еще связанных цетромерой. Во время второго деления хромосомы, уже индивидуальные, опять выстраиваются, образуя, как и в митозе, экваториальную пластинку, но их удвоения при этом делении не происходит. Затем центромеры делятся, и каждая дочерняя клетка получает одну хроматиду.

Деление цитоплазмы.В результате двух мейотических делений диплоидной клетки образуются четыре клетки. При образовании мужских половых клеток получается четыре спермия примерно одинаковых размеров. При образовании же яйцеклеток деление цитоплазмы происходит очень неравномерно: одна клетка остается крупной, тогда как остальные три настолько малы, что их почти целиком занимает ядро. Эти мелкие клетки, т.н. полярные тельца, служат лишь для размещения избытка хромосом, образовавшихся в результате мейоза. Основная часть цитоплазмы, необходимой для зиготы, остается в одной клетке – яйцеклетке.

Конъюгация и кроссинговер.Во время конъюгации хроматиды гомологичных хромосом могут разрываться и затем соединяться в новом порядке, обмениваясь участками следующим образом:

Этот обмен участками гомологичных хромосом называется кроссинговером (перекрестом). Как показано выше, кроссинговер ведет к возникновению новых комбинаций аллелей сцепленных генов. Так, если исходные хромосомы имели комбинации АВ и ab, то после кроссинговера они будут содержать Ab и aB. Этот механизм появления новых генных комбинаций дополняет эффект независимой сортировки хромосом, происходящей в ходе мейоза.

Различие состоит в том, что кроссинговер разделяет гены одной и той же хромосомы, тогда как независимая сортировка разделяет только гены разных хромосом.

30. Мутации наследственного аппарата. Их классификация.Факторы, вызывающие мутации наследственного аппарата

Факторами, вызывающими мутации, могут быть самые разнообразные влияния внешней среды: температура, ультрафиолетовое излучение, радиация (как естественная, так и искусственная), действия различных химических соединений - мутагенов.

Мутагенами называют агенты внешней среды, вызывающие те или иные изменения генотипа - мутацию, а сам процесс образования мутаций - мутагенезом.

Радиационным мутагенезом начали заниматься в 20-х годах прошлого столетия. В 1925 г. советские учёные Г. С. Филиппов и Г. А. Надсон впервые в истории генетики применили рентгеновские лучи для получения мутаций у дрожжей. Через год американский исследователь Г. Меллер (в последствии дважды лауреат Нобелевской премии), длительное время работавший в Москве, в институте, руководимом Н. К. Кольцовым, применил тот же мутаген на дрозофиле. Было установлено, что доза облучения в 10 рад удваивает частоту мутаций у человека. Радиация может индуцировать мутации, приводящие к наследственным и онкологическим заболеваниям.

Химический мутагенез впервые целенаправленно начали изучать сотрудник Н. К. Кольцова В. В. Сахаров в 1931 г. на дрозофиле при воздействии на её яйца йодом, а позже М. Е. Лобашов.

К химическим мутагенам относятся самые разнообразные вещества (перекись водорода, альдегиды, кетоны, азотная кислота и её аналоги, соли тяжёлых металлов, вещества ароматического ряда,инсектициды, гербициды, наркотики, алкоголь, никотин, некоторые лекарственные вещества и многие другие. От 5 до 10% этих соединений обладают мутагенной активностью (способны нарушить структуру или функционирование наследственного материала).

Генетически активные факторы можно разделить на 3 категории: физические, химические и биологические.

Физические факторы. К их числу относятся различные виды ионизирующей радиации и ультрафиолетовое излучение. Исследование действия радиации на мутационный процесс показало, что пороговая доза в этом случае отсутствует, и даже самые небольшие дозы повышают вероятность возникновения мутаций в популяции. Повышение частоты мутаций опасно не столько в индивидуальном плане, сколько с точки зрения увеличения генетического груза популяции.

Например, облучение одного из супругов дозой в пределах удваивающей частоту мутаций (1,0 - 1,5 Гй) незначительно повышает опасность иметь больного ребёнка (с уровня 4 - 5% до уровня 5 - 6%). Если такую же дозу получит население целого района, то число наследственных заболеваний в популяции через поколение удвоится.

Химические факторы. Химизация сельского хозяйства и других областей человеческой деятельности, развитие химической промышленности обусловили синтез огромного потока веществ, в том числе таких, которых в биосфере никогда не было за миллионы лет предшествующей эволюции. Это означает прежде всего неразложимость и длительное сохранение чужеродных веществ попадающих в окружающую среду. То, что было принято первоначально за достижения в борьбе с вредными насекомыми, в дальнейшем обернулось сложной проблемой. Широкое применение в 40 - 60-е годы прошлого века инсектицида ДДТ, привело к его распространению по всему земному шару вплоть до льдов Антарктиды.

Большинство пестицидов обладает большой устойчивостью к химическому и биологическому разложению и имеет высокий уровень токсичности.

Биологические факторы. Наряду с физическими и химическими мутагенами генетической активностью обладают также некоторые факторы биологической природы. Механизмы мутагенного эффекта этих факторов изучены наименее подробно. В конце 30-х годов С, М. Гершензоном начаты исследования мутагенеза у дрозофилы под действием экзогенной ДНК и вирусов. С тех пор установлен мутагенный эффект многих вирусных инфекций и для человека.

Аберрации хромосом в соматических клетках вызывают вирусы оспы, кори, ветряной оспы, эпидемического паротита, гриппа, гепатита и др.

Классификация мутаций

Классификацию мутаций предложил в 1932 г. Г. Меллер.

Выделяют:

- гипоморфные мутации - проявление признака, контролируемого патологическим геном ослаблено по сравнению с признаком, контролируемым нормальным геном (синтез пигментов).

- аморфные мутации - признак, контролируемый патологическим геном, не проявляется, так как патологический ген не активен по сравнению с нормальным геном (ген альбинизма).

Гипоморфные и аморфные мутации лежат в основе болезней, наследуемых по рецессивному типу.

- антиморфные мутации - значение признака, контролируемого патологическим геном, противоположно значению признака, контролируемого нормальным геном (доминантно наследуемые признаки и заболевания).

- неоморфные мутации - значение признака, контролируемое патологическим геном, противоположно значению гена, контролируемого нормальным геном (синтез в организме новых антител на проникновение антигена).

- гиперморфные мутации - признак, контролируемый патологическим геном, выражен сильнее признака, контролируемого нормальным геном (анемия Фанкони).

Современная классификация мутаций включает:

- генные или точковые мутации. Это изменение в одном гене (любой его точке), приводящее к появлению новых аллелей. Точковые мутации наследуются как простые менделеевские признаки, такие как например, хорея Гентингтона, гемофилия и др. (пример с-м Мартина - Бел, муковисцидоз)

- хромосомные мутации - нарушают структуру хромосомы (группу сцепления генов) и приводят к формированию новых групп сцепления. Это структурные перестройки хромосом в результате делеции, дупликации, транслокации (перемещения), инверсии или инсерции наследственного материала (пример с-м Дауна, с-м кошачьего крика)

- геномные мутации ведут к появлению новых геномов или их частей путем добавления или утраты целых хромосом. Другое их название - численные (числовые) мутации хромосом в результате нарушения количества генетического материала. (пример с-м Шерешевского - Тернера, с-м Клайнфельтера).

31. Факторы мутагенеза наследственного аппарата.

Мутации делятся на спонтанные и индуцированные. Спонтанными называются мутации, возникшие под влиянием неизвестных нам природных факторов. Индуцированные мутации вызваны специальными направленными воздействием.

Факторы, способные индуцировать мутационный эффект, получили название мутагенных. Главнейшими мутагенными факторами являются:1) химические соединения, 2) различные виды излучений.

Химический Мутагенез

В 1934г. М.Е.Лобашев отметил, что химические мутагены должны обладать 3 качествами:







Дата добавления: 2015-12-04; просмотров: 102. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия