Студопедия — Дифракция света на щелях.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифракция света на щелях.






Дифракцией света называют явление отклонения света от прямолинейного распространения в среде с резкими неоднородностями.
Описать картину дифракции можно с учетом интерференции вторичных волн.

Рассмотрим дифракцию от узкой щели (АВ)

MN – непрозрачная преграда;

АВ=а – ширина щели;

АВ – часть волновой поверхности, каждая точка которой является источником вторичных волн, которые распространяются за щелью по разным направлениям. Линза соберет лучи А, А1 и В в точке О1 экрана.

АD - перпендикуляр к направлению пучка вторичных волн. Разбили ВD на отрезки =лямда/2.

АА1, А1В - зоны Френеля. Вторичные волны, идущие от двух соседних зон Френеля, не гасят друг друга, так как отличаются по фазе на пи. Число зон, укладывающихся в щели, зависит от длины волны лямда и угла альфа.

Если щель АВ разбить при построении на нечетное число зон Френеля, а ВD на нечетное число отрезков, равных лямда/2, то в точке О1 наблюдается максимум интенсивности света. ВD=а*sinα=+-(2k+1)*лямда/2.

Если щель разбить на четное число зон Френеля, то наблюдается минимум освещенности: а*sinα=+-2k*лямда/2=+-k*лямда.

Поэтому на экране получится система светлых (mах) и темных (min) полос симметричных относительно центра (альфа=треугольник - изменение) - наиболее яркой полосы.

Интенсивность остальных максимумов убывает с увеличением к.

 

 

37, Дифракционная решетка. Дифракционный спектр.

Дифракционная решетка - оптическое устройство, представляющее собой совокупность большого числа параллельных щелей, равноудаленных друг от друга.

Суммарная ширина щели и штриха (a+b=d) – период решетки.

! d=((a+b)*N)/N=C/N!, где С –ширина решетки, N -число штрихов на ней.

 

 

на нем: Л- линза; Р – решетка; Э - экран

Максимумы, которые образуются на экране, после интерференции вторичных волн, идущих от узких щелей, удовлетворяют условию:

!d*sin фи = k*лямбда! - формула дифракционной решетки.

фи - угол дифракции (угол отклонения от прямолинейного направления);

k - порядок спектра;

лямбда - длина волны света, освещающего решетку,

Дифракционные спектры для монохроматического света представляет собой чередование максимумов и минимумов по обе стороны от центрального механизма. Максимумы имеют цвет соответствующей длины света, освещающего решетку.

Если решетку освещать белым светом, то центральный максимум будет белым, а остальные будут представлять собой чередование цветных полос плавно переходящих друг в друга, т. к. sin фи= k*лямбда/d - зависит от длины волны света. D = к/t - угловая дисперсия решетки. R =k*N - разрешающая способность.

38. Свет естественный и поляризованный. Закон Малюса.

ОО' - плоскость поляризации анализатора.

Электромагнитную волну длиной от 3,8*10в-7м до 8*10в-7м, в которой вектор напряженности электрического поля Е колеблется во всевозможных плоскостях, называют естественным светом:

|-*-|-*-|-> - условное изображение естественного света.

Волну, в которой E колеблется лишь в одной плоскости, называют поляризованным светом

-*-*-*-*-> - условное изображение поляризованного света.

Плоскость, проходящая через вектор E называется плоскостью поляризации. Плоскополяризованную волну излучает отдельный атом. В

естественном свете (солнце, лампа, свеча,...) складываются неупорядоченные

излучения множества хаотически ориентированных атомов, поэтому

направление Е не выдерживается в одной плоскости.

Поляризованный свет можно получить различными способами: а) свет

- частично поляризуется при преломлении, пропустив естественный свет через стопу Столетова (стеклянных пластин); б) при отражении от границы двух диэлектриков свет полностью поляризуется, если падает под углом Брюстера!tg алфа с ин.Бр = n1/n2!

 

 

в) из кристаллов, обладающих двойным лучепреломлением, делают поляроиды (призма Николя).

Если поляризованный свет интенсивности Ic ин.0 падает, на анализатор (поляроид), то из него выйдет свет с амплитудой напряженности

E=E0*cos фи

Т.к. интенсивность пропорциональна Ев2, то Ео - интенсивность вышедшего света: I=Io *Cos^2 фи - закон Малюса. фи - угол между ОO и плоскостью поляризации.

39. Поляризация при двойном лучепреломлении. Дихроизм.

В природе существуют кристаллы, обладающие двойным лучепреломлением (кварц, исландский шпат, и др.). Двойное

лучепреломление обусловлено особенностями распространения электромагнитных волн в анизотропных средах.

 

При падении света на кристалл (1), луч раздваивается на обыкновенный (о), который подчиняется закону преломления; и необыкновенный (e), который не подчиняется этому закону:

! sin альфа/sin бета = H2/H1!

где альфа – угол падения, бета - угол преломления.

Если из такого кристалла сделать призму из двух треугольных призм, склеенных веществом с показателем преломления >Н призмы, то, подобрав углы, добиваются, что обыкновенный луч испытывает на границе I призма-клей полное отражение, и из призмы выходит лишь необыкновенный плоскополяризованный пучок: призма Николя

 

Есть кристаллы, которые поглощают (е) и (о) по-разному (турмалин, геранатит и др.). Так, в пластинке турмалина толщиной 1 мм обыкновенный луч практически полностью поглощается и вышедший необыкновенный луч плоскополяризован. Такое свойство кристаллов, которые наряду с двойным лучепреломлением, обладают и свойством по-разному поглощать (о) и (е) лучи, называется дихроизм.

Из таких кристаллов делают поляроиды с большей площадью поверхности, что удобно использовать для получения поляризованного света широкие пучки естественного, а не узкие.

 

40. Вращение плоскости поляризации. Поляриметрия.

 

В природе существуют оптически активные вещества. Если через них пропустить поляризованный свет, то они поворачивают плоскость поляризации световой волны (кварц, многие растворы сахара). Угол поворота плоскости поляризации зависит от длины волны падающего света (вращательная дисперсия). Для монохроматического света угол поворота (фи) прямо пропорционален толщине (l) оптически активного вещества:

фи =[альфа]*l где [альфа] - постоянная вращения.

Оптически активными могут быть и растворы (сахара в воде, камфары, скипидар, и др.). Для растворов установлен закон Био:

фи = [альфа0]*l*C, где [альфа0] -удельное вращение, зависящее от температуры, свойств растворителя;

С -концентрация оптически активного в растворе.

Этот закон лежит в основе метода измерения концентрации веществ в растворах - поляриметрия (сахариметрия).

Пропуская поляризованный свет через раствор концентрации С толщиной l, определяют угол поворот плоскости поляризации (в простейшем поляриметре) или сразу концентрацию в % (в сахариметре).

фи - по углу поворота компенсирующей призмы сахариметра (поляриметрия) и рассчитывают; С=фи/l[альфа]. В сахариметре компенсирующая

призма (уравнивающая освещенности рядом лежащих полей, одно поле освещено пучком, повернутым на угол (фи+фи1), другое - (фи-фи1), поворачивается вместе со шкалой, проградуированной в % концентрации (очень удобно, не нужно считать).

41. Оптическая система глаза. Аккомодация. Угол зрения. Разрешающая способность глаза.

Глаз человека - оптический прибор. Глаз может быть представлен как центрированная оптическая система, образованная роговицей, жидкостью передней камеры и хрусталиком (четыре преломляющие поверхности) и ограниченного спереди воздушной средой, сзади - стекловидным телом. Главная оптическая ось (ОО1) проходит через геометрические центры роговицы (I) зрачка (2) и хрусталика (3).

 

MN - зрительная ось, направление наибольшей светочувствительности

глаза. Для упрощения можно заменить глаз линзой, окруженной воздухом

со стороны пространства предметов(I) n1=1; и жидкостью с показателем

преломления n2 = 7,336 со стороны пространства изображений (II).

Основное преломление происходит на внешней границе роговицы,

оптическая сила которой D1=40днтp, хрусталика - D2 = 20дитр; всего глаза D=D1+D2.

Различно удалённые предметы должны давать на сетчатке одинаково

резкие изображения, этого добиваются тем, что хрусталик может изменить

свой радиус кривизны, т.е. фокусное расстояние. Приспособление глаза к

четкому видению различно удаленных предметов - «наводка на резкость» -

называется аккомодация. 25 см - расстояние до предмета носит название

расстояния наилучшего зрения. Размер изображения зависит от угла зрения

(бета), угла, под которым виден предмет (а он зависит от расстояния до

предмета). бета = В/L, где В - размер предмета, L - расстояние от предмета до

глаза.

Разрешающая способность глаза - (наименьший угол зрения) или наименьшие размеры предмета, которые дадут изображения на сетчатке.

Бета с ин. min= 1` (одна минута). Bmin = 5*10^(-6)м = 0,005мм.

42. Чувствительность глаза к цвету и свету.

Сетчатка глаза состоит из нескольких слоев и не одинакова по своей толщине и чувствительности к свету, в ней находятся светочувствительные зрительные клетки, периферические концы которых имеют различную форму, Продолговатые окончания называются палочками, конусообразные -колбочками. Длина палочек (63-81)*10^(-6)м, диаметр - около 106 мкм; для колбочек длина 35 мкм, диаметр(5-6)мкм. На сетчатке глаза человека расположено около 130млн. палочек и 7млн колбочек. В месте вхождения зрительного нерва находится не чувствительное к свету слепое пятно. В середине сетчатки, чуть ближе к височной области, лежит самое чувствительное к свету жёлтое пятно, центральная часть которого имеет диаметр около 0,4мкм. Палочки и колбочки распределены по сетчатке неравномерно. Колбочки в основном в центральной части сетчатки, в жёлтом пятне, в центре жёлтого пятна находятся исключительно колбочки; но края сетчатки - только палочки. Палочки более чувствительны к интенсивности света, но не различают цвета. Колбочки различают цвета, они чувствительны к восприятию деталей изображения, поэтому решающую способность глаза обуславливается размещением колбочек на сетчатке. Палочки относятся к аппарату сумеречного и ахроматического зрения, а колбочки - дневного и цветного. Светочувствительность глаза - минимальная яркость, вызывающая зрительное ощущение, светочувствительность изменяется благодаря адаптации глаза(изменение диаметра зрачка; уменьшение количества светочувствительного вещества; экранирование палочек и колбочек темным

пигментом; изменение в зависимости от яркости предмета степени участия палочек и колбочек в возбуждении(светового ощущения).

43. Оптический микроскоп. Ход лучей. Увеличение и т.д.

Для больших увеличений используют систему короткофокусных линз – объектив – окуляр. Такая система носит название – микроскоп. Изображение получается в фокальной плоскости окуляра.

АВ - предмет; A1B1- изображение; А2В2 - изображение, даваемое окуляром (оно увеличенное перевёрнутое мнимое). Для получения микрофотографий объектив (или окуляр) отодвигают, тогда A1B1 получается за передним фокусом F2, а изображение будет действительным, увеличенным справа от окуляра. Бета = А2В2/АВ - увеличение микроскопа Бета = L*S/F1F2, где L - длинна тубуса; S - расстояние наилучшего зрения. Но полученное увеличение зависит от разрешающей способности глаза Zгл. = 70мкм; и микроскопа, которое связано с дифракцией на мелких структурах;

Z= лямбда/2n sin фи;

n - показатель преломления веществ между объективом и предметом;

фи - апертурный угол (между крайними лучами входящими в объектив); лямбда -длинна волны света, освещающего предмет.

Г=Zгл/Z - полезное увеличение микроскопа.

Для увеличения разрешающей способности необходимо уменьшить предельное разрешение Z; для этого увеличивают n, вводя иммерсионную жидкость с показателе преломления близким к n - стекла между предметом и объективом.

 

44. Характеристики теплового излучения тел. Абсолютно чёрное тело. Серые тела. Закон Кирхгофа. Выводы из него.

Всякое нагретое тело излучает энергию в виде элеткро-магнитных волн. Для того, чтобы определить количественно энергию излучения с поверхности нагретого тела используют энергетическую совместимость тела «R»

R = энергии, которая излучается 1 квадратным метром нагретого тела за 1 сек. Фактически его мощность

R = W/S*t. В этот диапозон входят все длины волн. Для того, чтобы определить какая энергия излучается в заданном диапозоне, вводят спектральную энергетическую светимость «r лямда-инд», зависящей от длины волны.

r лямда = dR/dлямда (2) [r лямда]=В*м^3 => dR = r лямда*d лямда

Если необходимо узнать всю энергию энергию, неужно просуммировать светимость по всем длинам волн

Re = опред интеграл от 0 до бескон от r лямда*dлямда

Энергия излучения солнца в видимом диапозоне:

Rв = опред интеграл от лямда1 до лямда2 от r лямда*dлямда (лямда1=400нм, лямда2=800нм)

Часть энергии солнца поглощается землёй.

Абсолютно чёрное тело – тело, для которого монохроматический коэффициент поглощения (альфа лямда-инд) =1

Серое тело – альфа лямда-инд которого меньше 1 и не зависит от длины волны падающего света. Серых тел в природе нет, но многие тела излучают в определённым интервале длин волн как серые.

Вводят величину коэффициент поглощения альфа

альфа = I погл/Iпад. I – интенсивность света.

Io->(тело)->I’

Iпогл = Io-I’=I.

альфа=I/Io

альфа=f(лямда)

Цвет обусловлен отражением и поглощением света.

Для описания процессов процессов с использованием формул вводятся альфа не зависящая от I; альфа=1;

альфа=1 – абсолютно чёрное тело.

Все длины волн поглощаются одинаково.

Солнце похоже на абсолютно чёрное тело.

альфа не зависит от I; альфа<1; альфа=0,8 – на всех длинах тел.

Человеческая кожа в некотором смысле тела похожа серое тело.

Нагретое тело – тело, по которому его температура >0 K.

Излучаемые и поглощаемые энергии =. (r лямда/альфа лямда)1 = (r лямда/альфа лямда)2 = (r лямда/альфа лямда)3 = Er/1 (1,2,3 – коэффициенты).

Закон Киргофа: r лямда = Er*альфа лямда

Если мы знаем как излучает тело и знаем коэффициент поглощения, мы можем определить энергетическую светимость.

Согласно закону Киргофа, в какой области спектра тело излучает, в такой области тело и поглощает.

Спектры излучения – графики зависимости r лямда от лямда и поглощения альфа от лямда одинаковы – волнообразные скачки с зазубринами.

 

45 3аконы излучения абсолютно чёрного тела (Стефана - Больцмана, Вина). Формула Планка. Использование термографии в диагностике.

 

Излучение чёрного тела имеет сплошной спектр. Графически это выглядит для разных температур так:

 

 

Существует максимум спектральной светимости, который при повышении

температуры смещается в сторону коротких волн.

По мере нагревания чёрного тела его энергетическая светимость (Re)

увеличивается: Re = опред интеграл от 0 до бескон от Eлямда*dлямда

Стефан и Больцман установили, что Re=сигма*T^4

Сигма = 5,6696*10^-8 Вт/K*м^2 - постоянная Стефана-Больцмана,

T=t +273 - абсолютная (термодинамическая) температура по шкале

Кельвина. Все замечали это на практике, чем выше температура спирали, нагретой печи, тем больше они излучают тепла.

ЛЯМДАmax=b/T - закон смещения Вина. Чем выше температура нагретого тела, тем более короткие волны оно излучает. Это также все замечали - человеческое тело излучает в области невидимых инфракрасных длин волн; чем более нагретым становится тело, тем оно начинает светиться цветом близким к фиолетовому: красное, оранжевое, жёлтое, голубое... Законы Стефана-Больцмана и Вина лежат в основе оптической пирометрии - определения температуры тел по их излучательной способности. Регистрация излучения разных участков поверхности тела и определение их температуры, диагностический метод - термография (воспалительные процессы изменяют местную температуру и по изменению температуры находят место воспаления) Планк получил формулу для спектральной плотности абсолютно черного тела (Eлямда) и серого тела (r лямда) (лямда-индекс): Eлямда=2п*h*c^2/лямда^5 * 1/exp[h*c/k*T*лямда-1]

альфа - коэффициент поглощения

h - постоянная Планка;

С - скорость света в вакууме;

лямда - длина волны;

k - постоянная Больцмана;

Т - абсолютная температура.

 

46. Поглощение света веществом. Закон Бугера-Ламберта-Бера. Оптическая плотность, концентрационная калориметрия.

Явление уменьшения интенсивности (I) света при прохождении вещества называется поглощением. При этом световая энергия переходит в другие виды энергии (тепловую, химическую и др.), интенсивность света, вышедшего из вещества выражается законом Бугера-Ламберта-Бера: I=Io*e^-каппа*С*д

Io - интенсивность света, упавшего на вещество;

I - вышедшего из вещества; каппа (из транскрип англ)- молярный показатель поглощения;

С -молярная концентрация вещества в растворе;

l - толщина поглощающего слоя.

I/Io=r - коэффициент пропускания. D = lg(Io/I)=Xлямда оптическая плотность раствора.

Концентрационная калориметрия - метод (фотометрический) по определению концентрации вещества в окрашенном растворе. В этом методе непосредственно измеряют световые потоки, прошедшие через раствор, коэффициент пропускания или оптическую плотность. Зависимость коэффициента поглощения (k) от длины волны (А) или молярного показателя поглощения - являются спектрами поглощения вещества. Спектры поглощения являются источником информации о состоянии вещества, о структуре энергетических уровней его атомов и молекул для определения спектральной плотности абсолютно черного тела (Eлямда) и серого тела (r лямда) (лямда-индекс): Eлямда=2п*h*c^2/лямда^5 * 1/exp[h*c/k*T*лямда-1]

альфа - коэффициент поглощения

h - постоянная Планка;

С - скорость света в вакууме;

лямда - длина волны;

k - постоянная Больцмана;

Т - абсолютная температура.

 

47. Оптические атомные эмиссионные спектры. Молекулярные спектры. Применение спектрофотометрии в медицине и биологии.

 

Атомные спектры - спектры испускания (или поглощения), которые возникают при квантовых переходах между уровнями свободных или

слабовзаимодейтвующих атомов. Атомные спектры испускания возникают при переходе атомов возбуждённых (нагреванием, электрическим разрядом, химической реакцией и др.). При переходе атомов с различных возбуждённых энергетических уровней на один и тотже испускаются спектральные серии: серия Леймана (переход на первый энергетический уровень), атом испускает фотоны ультрафиолетовой области; серия Больцмана - переход на 2-ой энергетический уровень - видимый свет; серия Пашена - переход на 3-ий уровень - область инфракрасного излучения. Анализ эмиссионных спектров излучения в поглощения в медицине и биологии служат для определения микроэлементов в тканях организма, небольшого количества атомов металлов в консервированных продуктах, некоторых элементов в трупных тканях для целей судебной медицины др.

Молекулярные спектры (испускания и поглощения) возникают при квантовых переходах молекул с одного энергетического уровня на другой -

полосатые спектры, состоящие из тесно расположенных линий. Сложность их по сравнению с атомным обусловлена большим разнообразием энергетических переходов в молекуле.

Специфичность индивидуальность спектров отдельных молекул лежит в основе качественного и количественного спектрального анализа. Они являются важным источником информации о биологически функциональных молекулах ишироко используются в современных биохимических и биофизических работах.

48. Тормозное рентгеновское излучение. Спектр излучения и

его характеристическое рентгеновское излучение.

 

Рентгеновское излучение - электромагнитныеволны длиной от 80 до 10в-5 нм.

По способу возбуждения его подразделяют на тормозные и характеристические. Рентгеновская трубка - двухэлектродный вакуумный прибор. Подогреваемый катод испускает электроны. Haклоненный анод направляет излучение под углом к оси трубки. В результате торможения электронов анодом (электростатическим полем атомного ядра вещества анода) возникает тормозное рентгеновское излучение. Длинноволновое рентгеновское излучение,более "мягкое", а коротковолновое- жесткое, оно обладает большой проникающей способностью, поглощение его зависит от плотности вещества. Если напряжение в рентгеновской трубке увеличить, то на фоне сплошного спектра появляется линейчатый - Характерестическoe рентгеновское излучение. Он возникает вследствие того, что ускоренные электроны проникают вглубь атома и из внутренних слоев выбивают электроны. На свободное место переходят электроны с верхних уровней, при этом излучаются фотоны характеристического излучения. В отличие от оптических спектров характеристические рентгеновские спектры разных атомов однотипны, однотипность обусловлена тем, что внутренний слой у разных атомов одинаковы и отличаются лишь энергетически. Характеристические спектры сдвигаются в сторону больших частот с увеличением заряда ядра. По закону Мозли!корень из НЮ=A(Z-B)!, где НЮ -частота спектральной линии, Z-атомный номер элемента, Аи В - постоянные. Характеристические спектры кислорода одинаковы и y O, O2, H2O в любом соединении, это и послужило названию характеристическое.







Дата добавления: 2015-12-04; просмотров: 489. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия