Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Газообмен и транспорт О2





 

Транспорт О2 осуществляется в физически растворенном и хи­мически связанном виде. Физические процессы, т. е. растворение газа, не могут обеспечить запросы организма в О2. Подсчитано, что физически растворенный О2 может поддерживать нормальное по­требление О2 в организме (250 мл*мин-1), если минутный объем кровообращения составит примерно 83 л*мин-1 в покое. Наиболее оптимальным является механизм транспорта О2 в химически свя­занном виде.

 

Согласно закону Фика, газообмен О2 между альвеолярным воздухом и кровью происходит благодаря наличию концентраци­онного градиента О2 между этими средами. В альвеолах легких парциальное давление О2 составляет 13,3 кПа, или 100 мм рт.ст., а в притекающей к легким венозной крови парциальное напряжение О2 составляет примерно 5,3 кПа, или 40 мм рт.ст. Давление газов в воде или в тканях организма обозначают тер­мином «напряжение газов» и обозначают символами Ро2, Рсo2. Градиент О2 на альвеолярно-капиллярной мембране, равный в среднем 60 мм рт.ст., является одним из важнейших, но не единственным, согласно закону Фика, факторов начальной стадии диффузии этого газа из альвеол в кровь.

 

Транспорт О2 начинается в капиллярах легких после его хими­ческого связывания с гемоглобином.

 

Гемоглобин (Нb) способен избирательно связывать О2 и образо­вывать оксигемоглобин (НbО2) в зоне высокой концентрации О2 в легких и освобождать молекулярный О2 в области пониженного содержания О2 в тканях. При этом свойства гемоглобина не изме­няются и он может выполнять свою функцию на протяжении дли­тельного времени.

 

Гемоглобин переносит О2 от легких к тканям. Эта функция зависит от двух свойств гемоглобина: 1) способности изменяться от восстановленной формы, которая называется дезоксигемоглобином, до окисленной (Нb + О2 à НbО2) с высокой скоростью (полупериод 0,01 с и менее) при нормальном Рог в альвеолярном воздухе; 2) способности отдавать О2 в тканях (НbО2 à Нb + О2) в зависимости от метаболических потребностей клеток организма.

 

Зависимость степени оксигенации гемоглобина от парциального давления Ог в альвеолярном воздухе графически представляется в виде кривой диссоциации оксигемоглобина, или сатурационной кри­вой (рис. 8.7). Плато кривой диссоциации характерно для насы­щенной О2 (сатурированной) артериальной крови, а крутая нисхо­дящая часть кривой — венозной, или десатурированной, крови в тканях.

 

На сродство кислорода к гемоглобину влияют различные мета­болические факторы, что выражается в виде смещения кривой дис­социации влево или вправо. Сродство гемоглобина к кислороду регулируется важнейшими факторами метаболизма тканей: Ро2 pH, температурой и внутриклеточной концентрацией 2,3-дифосфоглицерата. Величина рН и содержание СО2 в любой части организма закономерно изменяют сродство гемоглобина к О2: уменьшение рН крови вызывает сдвиг кривой диссоциации соответственно вправо (уменьшается сродство гемоглобина к О2), а увеличение рН крови — сдвиг кривой диссоциации влево (повышается сродство гемоглобина к О2) (см. рис. 8.7, А). Например, рН в эритроцитах на 0,2 единицы ниже, чем в плазме крови. В тканях вследствие повышенного со­держания СО2 рН также меньше, чем в плазме крови. Влияние рН на кривую диссоциации оксигемоглобина называется «эффектом Бора».

 

Рост температуры уменьшает сродство гемоглобина к О2. В ра­ботающих мышцах увеличение температуры способствует освобож­дению О2. Уменьшение температуры тканей или содержания 2,3-дифосфоглицерата вызывает сдвиг влево кривой диссоциации окси­гемоглобина (см. рис. 8.7, Б).

 

Метаболические факторы являются основными регуляторами связывания О2 с гемоглобином в капиллярах легких, когда уровень O2, рН и СО2 в крови повышает сродство гемоглобина к О2 по ходу легочных капилляров. В условиях тканей организма эти же факторы метаболизма понижают сродство гемоглобина к О2 и способствуют переходу оксигемоглобина в его восстановленную форму — дезоксигемоглобин. В результате О2 по концентрацион­ному градиенту поступает из крови тканевых капилляров в ткани организма.

 

Оксид углерода (II) — СО, способен соединяться с атомом железа гемоглобина, изменяя его свойства и реакцию с О2. Очень высокое сродство СО к Нb (в 200 раз выше, чем у О2) блокируют один или более атомов железа в молекуле гема, изменяя сродство Нb к О2.

 

Под кислородной емкостью крови понимают количество Ог, которое связывается кровью до полного насыщения гемоглобина. При содержании гемоглобина в крови 8,7 ммоль*л-1 кислородная емкость крови составляет 0,19 мл О2 в 1 мл крови (температура 0oC и барометрическое давление 760 мм рт.ст., или 101,3 кПа). Величину кислородной емкости крови определяет количество гемо­глобина, 1 г которого связывает 1,36—1,34 мл О2. Кровь человека содержит около 700—800 г гемоглобина и может связать таким образом почти 1 л О2. Физически растворенного в 1 мл плазмы крови О2 очень мало (около 0,003 мл), что не может обеспечить кислородный запрос тканей. Растворимость О2 в плазме крови равна 0,225 мл*л-1*кПа-1.

 

Обмен О2 между кровью капилляров и клетками тканей также осуществляется путем диффузии. Концентрационный градиент О2 между артериальной кровью (100 мм рт.ст., или 13,3 кПа) и тканями (около 40 мм рт.ст., или 5,3 кПа) равен в среднем 60 мм рт.ст. (8,0 кПа). Изменение градиента может быть обусловлено как содержанием О2 в артериальной крови, так и коэффициентом утилизации О2, который составляет в среднем для организма 30— 40%. Коэффициентом утилизации кислорода называется количе­ство О2, отданного при прохождении крови через тканевые капил­ляры, отнесенное к кислородной емкости крови.

 

С другой стороны, известно, что при напряжении О2 в артери­альной крови капилляров, равном 100 мм рт.ст. (13,3 кПа), на мембранах клеток, находящихся между капиллярами, эта величина не превышает 20 мм рт.ст. (2,7 кПа), а в митохондриях равна в среднем 0,5 мм рт.ст. (0,06 кПа).

Поступление СО2 в легких из крови в альвеолы обеспечивается из следующих источников: 1) из СО2, растворенного в плазме крови (5—10%); 2) из гидрокарбонатов (80—90%); 3) из карбаминовых соединений эритроцитов (5—15%), которые способны диссоцииро­вать.

 

Для СО2 коэффициент растворимости в мембранах аэрогематического барьера больше, чем для О2, и составляет в среднем 0,231 ммоль*л-1 кПа-1 поэтому СО2 диффундирует быстрее, чем O2. Это положение является верным только для диффузии молекулярного СО2. Большая часть СО2 транспортируется в организме в связанном состоянии в виде гидрокарбонатов и карбаминовых соединений, что увеличивает время обмена СО2, затрачиваемое на диссоциацию этих соединений.

 

В венозной крови, притекающей к капиллярам легких, напря­жение СО2 составляет в среднем 46 мм рт.ст. (6,1 кПа), а в альвеолярном воздухе парциальное давление СО2 равно в среднем 40 мм рт.ст. (5,3 кПа), что обеспечивает диффузию СО2 из плазмы крови в альвеолы легких по концентрационному градиенту.

 

Эндотелий капилляров проницаем только для молекулярного СО2 как полярной молекулы (О — С — О). Из крови в альвеолы диффундирует физически растворенный в плазме крови молеку­лярный СО2. Кроме того, в альвеолы легких диффундирует СО2, который высвобождается из карбаминовых соединений эритроцитов благодаря реакции окисления гемоглобина в капиллярах легкого, а также из гидрокарбонатов плазмы крови в результате их быстрой диссоциации с помощью фермента карбоангидразы, содержащейся в эритроцитах.

 

Молекулярный СО2 проходит аэрогематический барьер, а затем поступает в альвеолы.

 

В норме через 1 с происходит выравнивание концентраций СО2 на альвеолярно-капиллярной мембране, поэтому за половину времени капиллярного кровотока происходит полный обмен СО2 через аэрогематический барьер. Реально равновесие наступает не­сколько медленнее. Это связано с тем, что перенос СО2, так же как и О2, ограничивается скоростью перфузии капилляров легких.

 

Диффузия СО2 из тканей в кровь. Обмен СО2 между клетками тканей с кровью тканевых капилляров осуществляется с помощью следующих реакций: 1) обмена С1- и НСО3- через мембрану эрит­роцита; 2) образования угольной кислоты из гидрокарбонатов; 3) диссоциации угольной кислоты и гидрокарбонатов.

 

В ходе газообмена СО2 между тканями и кровью содержание НСОз- в эритроците повышается и они начинают диффундировать в кровь. Для поддержания электронейтральности в эритроциты нач­нут поступать из плазмы дополнительно ионы С1- Наибольшее количество бикарбонатов плазмы крови образуется при участии карбоангидразы эритроцитов.

 

Карбаминовый комплекс СО2 с гемоглобином образуется в ре­зультате реакции СО2 с радикалом NH2 глобина. Эта реакция про­текает без участия какого-либо фермента, т. е. она не нуждается в катализе. Реакция СО2 с Нb приводит, во-первых, к высвобождению Н+; во-вторых, в ходе образования карбаминовых комплексов сни­жается сродство Нb к О2. Эффект сходен с действием низкого рН. Как известно, в тканях низкое рН потенцирует высвобождение О2 из оксигемоглобина при высокой концентрации СО2 (эффект Бора). С другой стороны, связывание О2 гемоглобином снижает сродство его аминогрупп к СО2 (эффект Холдена).

 

Каждая реакция в настоящее время хорошо изучена. Например, полупериод обмена С1-и НСО3- равен 0,11—0,16 с при 37 oС. В ус­ловиях in vitro образование молекулярного СО2 из гидрокарбонатов происходит чрезвычайно медленно и диффузия этого газа занимает около 5 мин, тогда как в капиллярах легкого равновесие наступает через 1 с. Это определяется функцией фермента карбоангидразы угольной кислоты. В функции карбоангидразы выделяют следующие типы реакций:

 

СО2+Н2Оß> H2СО3 ß> H++НСО3-

 

Процесс выведения СО2 из крови в альвеолы легкого менее лимитирован, чем оксигенация крови. Это обусловлено тем, что молекулярный СО2 легче проникает через биологические мембраны, чем О2. По этой причине он легко проникает из тканей в кровь. К тому же карбоангидраза способствует образованию гидрокарбо­ната. Яды, которые ограничивают транспорт О2 (такие как СО, метгемоглобинобразующие субстанции — нитриты, метиленовый си­ний, ферроцианиды и др.) не действуют на транспорт СО2. Блокаторы карбоангидразы, например диакарб, которые используются нередко в клинической практике или для профилактики горной или высотной болезни, полностью никогда не нарушают образование молекуляр­ного СО2. Наконец, ткани обладают большой буферной емкостью, но не защищены от дефицита О2. По этой причине нарушение транспорта О2 наступает в организме гораздо чаще и быстрее, чем нарушения газообмена СО2. Тем не менее при некоторых заболе­ваниях высокое содержание СО2 и ацидоз могут быть причиной смерти.

 

Измерение напряжения О2 и СО2 в артериальной или смешанной венозной крови производят полярографическими методами с исполь­зованием очень небольшого количества крови. Количество газов в крови измеряют после их полного извлечения из пробы крови, взятой для анализа.

 

Такие исследования выполняют с помощью манометрических приборов типа аппарата Ван-Слайка, или гемоалкариметра (необ­ходимо 0,5—2,0 мл крови) или на микроманометре Холандера (не­обходимо около 50 мкл крови).

67. Кислородная емкость крови. Механизм транспорта кислорода кровью. Анализ кривой диссоциации оксигемоглобина.

Лишь небольшая часть O2 (около 2 %), переносимого кровью, растворена в плазме. Основная его часть транспортируется в форме непрочного соединения с гемоглобином, который у позвоночных содержится в эритроцитах. В молекулы этого дыхательного пигмента входят видоспецифичный белок - глобин — и одинаково построенная у всех животных простетическая группа — гем, содержащая двухвалентное железо.

Присоединение кислорода к гемоглобину (оксигенация гемоглобина) происходит без изменения валентности железа, т.е. без переноса электронов, характеризующего истинное окисление. Тем не менее гемоглобин, связанный с кислородом, принято называть окисленным (правильнее — оксигемоглобин), а отдавший кислород — восстановленным (правильнее — дезоксигемоглобин).

1 г гемоглобина может связать 1,36 мл газообразного O2 (при атмосферном давлении). Учитывая, к примеру, что в крови человека содержится примерно 15 г % гемоглобина, 100 мл его крови могут переносить около 21 мл O2. Это так называемая кислородная емкость крови. Оксигенация гемоглобина (иначе говоря, процент, на который используется кислородная емкость крови) зависит от парциального давления O2 в среде, с которой контактирует кровь. Такая зависимость описывается кривой диссоциации оксигемоглобина (рис. 9.1.1). Сложная S-образная форма этой кривой объясняется кооперативным эффектом четырех полипептидных цепей гемоглобина, кислородсвязывающие свойства (сродство к O2) которых различны.

Рис. 9.11. Кривые диссоциации оксигемоглобина:

А — кривая насыщения гемоглобина кислородом при нормальном содержании СО2; Б — влияние изменения напряжения СО2 на кривую диссоциации оксигемоглобина; 1 — при низком содержании CO2, 2 — норма, 3 — при высоком содержании СО2

Благодаря такой особенности венозная кровь, проходя легочные капилляры (альвеолярное Р O2 приходится на верхнюю часть кривой), оксигенирируется почти полностью, а артериальная кровь в капиллярах тканей (где Р О2 соответствует крутой части кривой) эффективно отдает O2. Отдаче кислорода способствует содержащийся в эритроцитах 2,3-дифосфоглицерат, синтез которого усиливается при гипоксии и интенсификации окислительного процесса в тканях.

Кривая диссоциации оксигемоглобина сдвигается вправо при повышении температуры и при увеличении концентрации водородных ионов в среде, которая, в свою очередь, зависит от Р CO2 (эффект Бора). Поэтому создаются условия для более полной отдачи кислорода оксигемоглобином в тканях, особенно там, где выше интенсивность метаболизма, например в работающих мышцах. Однако и в венозной крови большая или меньшая часть (от 40 до 70 %) гемоглобина остается в оксигенированной форме. Так, у человека каждые 100 мл крови отдают тканям 5−6 мл O2 (так называемая артериовенозная разница по кислороду) и, естественно, на ту же величину обогащаются кислородом в легких.

Сродство гемоглобина к кислороду измеряется величиной парциального давления кислорода, при которой гемоглобин насыщается на 50 % (Р 50); У человека оно составляет в норме 26,5 мм рт. ст. для артериальной крови. Параметр Р 50 отражает способность дыхательного пигмента связывать кислород. Этот параметр выше для гемоглобина животных, обитающих в бедной кислородом среде, а также для так называемого фатального гемоглобина, который содержится в крови плода, получающего кислород из крови матери через плацентарный барьер.

 

68. Транспорт углекислоты кровью. Гидрокарбонатная и каpбаминовая формы связи СО2. Роль карбоангидразы в переносе СО2 кровью.

Поступление СО2 в легких из крови в альвеолы обеспечивается из следующих источников: 1) из СО2, растворенного в плазме крови (5—10%); 2) из гидрокарбонатов (80—90%); 3) из карбаминовых соединений эритроцитов (5—15%), которые способны диссоцииро­вать.

 

Для СО2 коэффициент растворимости в мембранах аэрогематического барьера больше, чем для О2, и составляет в среднем 0,231 ммоль*л-1 кПа-1 поэтому СО2 диффундирует быстрее, чем O2. Это положение является верным только для диффузии молекулярного СО2. Большая часть СО2 транспортируется в организме в связанном состоянии в виде гидрокарбонатов и карбаминовых соединений, что увеличивает время обмена СО2, затрачиваемое на диссоциацию этих соединений.

 

В венозной крови, притекающей к капиллярам легких, напря­жение СО2 составляет в среднем 46 мм рт.ст. (6,1 кПа), а в альвеолярном воздухе парциальное давление СО2 равно в среднем 40 мм рт.ст. (5,3 кПа), что обеспечивает диффузию СО2 из плазмы крови в альвеолы легких по концентрационному градиенту.

 

Эндотелий капилляров проницаем только для молекулярного СО2 как полярной молекулы (О — С — О). Из крови в альвеолы диффундирует физически растворенный в плазме крови молеку­лярный СО2. Кроме того, в альвеолы легких диффундирует СО2, который высвобождается из карбаминовых соединений эритроцитов благодаря реакции окисления гемоглобина в капиллярах легкого, а также из гидрокарбонатов плазмы крови в результате их быстрой диссоциации с помощью фермента карбоангидразы, содержащейся в эритроцитах.

 

Молекулярный СО2 проходит аэрогематический барьер, а затем поступает в альвеолы.

 

В норме через 1 с происходит выравнивание концентраций СО2 на альвеолярно-капиллярной мембране, поэтому за половину времени капиллярного кровотока происходит полный обмен СО2 через аэрогематический барьер. Реально равновесие наступает не­сколько медленнее. Это связано с тем, что перенос СО2, так же как и О2, ограничивается скоростью перфузии капилляров легких.

 

Диффузия СО2 из тканей в кровь. Обмен СО2 между клетками тканей с кровью тканевых капилляров осуществляется с помощью следующих реакций: 1) обмена С1- и НСО3- через мембрану эрит­роцита; 2) образования угольной кислоты из гидрокарбонатов; 3) диссоциации угольной кислоты и гидрокарбонатов.

 

В ходе газообмена СО2 между тканями и кровью содержание НСОз- в эритроците повышается и они начинают диффундировать в кровь. Для поддержания электронейтральности в эритроциты нач­нут поступать из плазмы дополнительно ионы С1- Наибольшее количество бикарбонатов плазмы крови образуется при участии карбоангидразы эритроцитов.

 

Карбаминовый комплекс СО2 с гемоглобином образуется в ре­зультате реакции СО2 с радикалом NH2 глобина. Эта реакция про­текает без участия какого-либо фермента, т. е. она не нуждается в катализе. Реакция СО2 с Нb приводит, во-первых, к высвобождению Н+; во-вторых, в ходе образования карбаминовых комплексов сни­жается сродство Нb к О2. Эффект сходен с действием низкого рН. Как известно, в тканях низкое рН потенцирует высвобождение О2 из оксигемоглобина при высокой концентрации СО2 (эффект Бора). С другой стороны, связывание О2 гемоглобином снижает сродство его аминогрупп к СО2 (эффект Холдена).

 

Каждая реакция в настоящее время хорошо изучена. Например, полупериод обмена С1-и НСО3- равен 0,11—0,16 с при 37 oС. В ус­ловиях in vitro образование молекулярного СО2 из гидрокарбонатов происходит чрезвычайно медленно и диффузия этого газа занимает около 5 мин, тогда как в капиллярах легкого равновесие наступает через 1 с. Это определяется функцией фермента карбоангидразы угольной кислоты. В функции карбоангидразы выделяют следующие типы реакций:

 

СО2+Н2Оß> H2СО3 ß> H++НСО3-

 

Процесс выведения СО2 из крови в альвеолы легкого менее лимитирован, чем оксигенация крови. Это обусловлено тем, что молекулярный СО2 легче проникает через биологические мембраны, чем О2. По этой причине он легко проникает из тканей в кровь. К тому же карбоангидраза способствует образованию гидрокарбо­ната. Яды, которые ограничивают транспорт О2 (такие как СО, метгемоглобинобразующие субстанции — нитриты, метиленовый си­ний, ферроцианиды и др.) не действуют на транспорт СО2.Блокаторы карбоангидразы, например диакарб, которые используются нередко в клинической практике или для профилактики горной или высотной болезни, полностью никогда не нарушают образование молекуляр­ного СО2. Наконец, ткани обладают большой буферной емкостью, но не защищены от дефицита О2. По этой причине нарушение транспорта О2 наступает в организме гораздо чаще и быстрее, чем нарушения газообмена СО2. Тем не менее при некоторых заболе­ваниях высокое содержание СО2 и ацидоз могут быть причиной смерти.

 

Измерение напряжения О2 и СО2 в артериальной или смешанной венозной крови производят полярографическими методами с исполь­зованием очень небольшого количества крови. Количество газов в крови измеряют после их полного извлечения из пробы крови, взятой для анализа.

 

Такие исследования выполняют с помощью манометрических приборов типа аппарата Ван-Слайка, или гемоалкариметра (необ­ходимо 0,5—2,0 мл крови) или на микроманометре Холандера (не­обходимо около 50 мкл крови).

Дыхательный центр и его отделы (дорсальная и вентральная группы респираторных нейронов, пневмотаксический центр). Регуляция дыхания при изменении газового состава крови (с хеморецепторов рефлексогенных зон), при раздражении механорецепторов легких и верхних дыхательных путей

Дыхательный центр

 

Под дыхательным центром следует понимать совокуп­ность нейронов специфических (дыхательных) ядер продолговатого мозга, способных генерировать дыхательный ритм.

 

В нормальных (физиологических) условиях дыхательный центр получает афферентные сигналы от периферических и центральных хеморецепторов, сигнализирующих соответственно о парциальном давлении О2 в крови и концентрации Н+ во внеклеточной жидкости мозга. В период бодрствования деятельность дыхательного центра регулируется дополнительными сигналами, исходящими из различ­ных структур ЦНС. У человека это, например, структуры, обеспе­чивающие речь. Речь (пение) может в значительной степени от­клонить от нормального уровень газов крови, даже снизить реакцию дыхательного центра на гипоксию или гиперкапнию. Афферентные сигналы от хеморецепторов тесно взаимодействуют с другими аф­ферентными стимулами дыхательного центра, но, в конечном счете, химический, или гуморальный, контроль дыхания всегда доминирует над нейрогенным. Например, человек произвольно не может беско­нечно долго задерживать дыхание из-за нарастающих во время остановки дыхания гипоксии и гиперкапнии.

 

Дыхательный центр выполняет две основные функции в системе дыхания: моторную, или двигательную, которая проявляется в виде сокращения дыхательных мышц, и гомеостатическую, связанную с изменением характера дыхания при сдвигах содержания О2 и СО2 во внутренней среде организма.

 

Двигательная функция дыхательного центра заключается в ге­нерации дыхательного ритма и его паттерна. Под генерацией ды­хательного ритма понимают генерацию дыхательным центром вдо­ха и его прекращение (переход в экспирацию). Под паттерном дыхания следует понимать длительность вдоха и выдоха, величину дыхательного объема, минутного объема дыхания. Моторная функ­ция дыхательного центра адаптирует дыхание к метаболическим потребностям организма, приспосабливает дыхание в поведенческих реакциях (поза, бег и др.), а также осуществляет интеграцию ды­хания с другими функциями ЦНС.

 

Гомеостатическая функция дыхательного центра поддерживает нормальные величины дыхательных газов (O2, CO2) и рН в крови и внеклеточной жидкости мозга, регулирует дыхание при изменении температуры тела, адаптирует дыхательную функцию к условиям измененной газовой среды, например при пониженном и повышенном барометрическом давлении.

 

Локализация и функциональные свойства дыхательных нейро­нов. Нейроны дыхательного центра локализованы в дорсомедиальной и вентролатеральной областях продолговатого мозга и образуют так называемые дорсальную и вентральную дыхательную группу.

 

Дыхательные нейроны, активность которых вызывает инспира­цию или экспирацию, называются соответственно инспираторными и экспираторными нейронами. Инспираторные и экспираторные нейроны иннервируют дыхательные мышцы. В дорсальной и вент­ральной дыхательной группах продолговатого мозга обнаружены следующие основные типы дыхательных нейронов: 1) ранние инспираторные, которые разряжаются с максимальной частотой в начале фазы вдоха; 2) поздние инспираторные, максимальная частота раз­рядов которых приходится на конец инспирации; 3) полные инс­пираторные с постоянной или с постепенно нарастающей активностью в течение фазы вдоха; 4) постинспираторные, которые имеют мак­симальный разряд в начале фазы выдоха; 5) экспираторные с по­стоянной или постепенно нарастающей активностью, которую они проявляют во вторую часть фазы выдоха; 6) преинспираторные, которые имеют максимальный пик активности непосредственно пе­ред началом вдоха. Тип нейронов определяется по проявлению его активности относительно фазы вдоха и выдоха.

 

Нейроны дыхательного центра, активность которых совпадает с ритмом дыхания, но они не иннервируют дыхательные мышцы, называются респираторно-связанными нейронами. К респираторно-связанным нейронам относят клетки дыхательного центра, иннервирующие мышцы верхних дыхательных путей, например гортани.

 

Дорсальная дыхательная группа (ДДГ) включает в се­бя симметричные области продолговатого мозга, расположенные вентролатеральнее ядра одиночного пучка (рис. 8.10). Дыхательные ней­роны этой группы относятся только к инспираторному типу нейронов и представлены поздними и полными инспираторными нейронами.

 

Нейроны ДДГ получают афферентные сигналы от легочных ре­цепторов растяжения по волокнам блуждающего нерва, нейроны которого имеют обширные синаптические связи с другими отделами дыхательного центра и с различными отделами ЦНС. Только часть инспираторных нейронов ДДГ связана аксонами с дыхательными мотонейронами спинного мозга, преимущественно с контралатеральной стороны.

 

Вентральная дыхательная группа (ВДГ) расположе­на латеральнее обоюдного ядра продолговатого мозга, или ядра блуждающего нерва. ВДГ подразделяется на ростральную и каудальную части относительно уровня задвижки (obex) продолговатого мозга (см. рис. 8.10).

 

Ростральная часть ВДГ состоит из инспираторных нейронов раз­ных типов: ранних, полных, поздних инспираторных и постинспираторных. Ранние инспираторные и постинспираторные нейроны ВДГ называются проприобульбарными нейронами, так как они не направляют свои аксоны за пределы дыхательного центра продол­говатого мозга и контактируют только с другими типами дыхатель­ных нейронов. Часть полных и поздних инспираторных нейронов направляют свои аксоны к дыхательным мотонейронам спинного мозга, а следовательно, управляют мышцами вдоха.

 

Каудальная часть ВДГ состоит только из экспираторных нейро­нов. Все экспираторные нейроны направляют аксоны в спинной мозг. При этом 40% экспираторных нейронов иннервирует внут­ренние межреберные мышцы, а 60% — мышцы брюшной стенки.

 

Ростральнее ВДГ локализованы компактной группой экспира­торные нейроны (комплекс Бетцингера), аксоны которых связаны только с другими типами нейронов дыхательного центра. Предпо­лагают, что именно эти нейроны синхронизируют деятельность пра­вой и левой половин дыхательного центра.

 

В непосредственной близости от нейронов ВДГ расположены различные типы респираторно-связанных нейронов, которые иннервируют мышцы верхних дыхательных путей и гортани.

 

Нейроны дыхательного центра в зависимости от проекции их аксонов подразделяют на три группы: 1) нейроны, иннервирующие мышцы верхних дыхательных путей и регулирующие поток воздуха в дыхательных путях; 2) нейроны, которые синаптически связаны с дыхательными мотонейронами спинного мозга и управляют таким образом мышцами вдоха и выдоха; 3) проприобульбарные нейроны, которые связаны с другими нейронами дыхательного центра и уча­ствуют только в генерации дыхательного ритма.

 

Другие области локализации дыхательных ней­ронов. В мосту находятся два ядра дыхательных нейронов: меди­альное парабрахиальное ядро и ядро Шатра (ядро Келликера). Иногда эти ядра называют пневмотаксическим центром. В первом ядре находятся преимущественно инспираторные, экспираторные, а также фазавопереходные нейроны, а во втором — инспираторные нейроны. У наркотизированных животных разрушение этих ядер вызывает уменьшение частоты и увеличение амплитуды дыхатель­ных движений. Предполагают, что дыхательные нейроны моста участвуют в механизме смены фаз дыхания и регулируют величину дыхательного объема. В сочетании с двусторонней перерезкой блуж­дающих нервов разрушение указанных ядер вызывает остановку дыхания на вдохе, или инспираторный апнейзис. Инспираторный апнейзис прерывается редкими, кратковременными и быстрыми вы­дохами. После выхода животных из наркоза апнейзис исчезает и восстанавливается ритмичное дыхание.

 

Диафрагмальные мотонейроны. Образуют диафрагмальный нерв. Нейроны расположены узким столбом в медиальной части вентральных рогов от СIII до CV. Диафрагмальный нерв состоит из 700—800 миелинизированных и более 1500 немиелинизированных волокон. Подавляющее количество волокон является аксонами α-мотонейронов, а меньшая часть представлена афферентными волок­нами мышечных и сухожильных веретен, локализованных в диаф­рагме, а также рецепторов плевры, брюшины и свободных нервных окончаний самой диафрагмы.

 

Мотонейроны сегментов спинного мозга, иннервирующие ды­хательные мышцы. На уровне CI—СII вблизи латерального края промежуточной зоны серого вещества находятся инспираторные ней­роны, которые участвуют в регуляции активности межреберных и диафрагмальных мотонейронов (см. рис. 8.10).

 

Мотонейроны, иннервирующие межреберные мышцы, локализованы в сером веществе передних рогов на уровне от TIV до ТX. Причем одни нейроны регулируют преимущественно дыхательную, а другие — преимущественно позно-тоническую активность меж­реберных мышц. Мотонейроны, иннервирующие мышцы брюшной стенки, лока­лизованы в пределах вентральных рогов спинного мозга на уровне TIV—LIII.

 

Генерация дыхательного ритма. Спонтанная активность нейронов дыхательного центра начинает появляться к концу периода внутриут­робного развития. Об этом судят по периодически возникающим рит­мическим сокращениям мышц вдоха у плода. В настоящее время до­казано, что возбуждение дыхательного центра у плода появляется благодаря пейсмекерным свойствам сети дыхательных нейронов про­долговатого мозга. Иными словами, первоначально дыхательные ней­роны способны самовозбуждаться. Этот же механизм поддерживает вентиляцию легких у новорожденных в первые дни после рождения. С момента рождения по мере формирования синаптических связей ды­хательного центра с различными отделами ЦНС пейсмекерный меха­низм дыхательной активности быстро теряет свое физиологическое значение. У взрослых ритм активности в нейронах дыхательного цен­тра возникает и изменяется только под влиянием различных синапти­ческих воздействий на дыхательные нейроны.

 

Дыхательный цикл подразделяют на фазу вдоха и фазу выдоха относительно движения воздуха из атмосферы в сторону альвеол (вдох) и обратно (выдох). Двум фазам внешнего дыхания соответ­ствуют три фазы активности нейронов дыхательного центра про­долговатого мозга: инспираторная, которая соответствует вдоху; постинспираторная, которая соответствует первой половине выдоха и называется пассивной контролируемой экспирацией; экспиратор­ная, которая соответствует второй половине фазы выдоха и назы­вается фазой активной экспирации

 

Генерация дыхательного ритма происходит в сети нейронов про­долговатого мозга, сформированной шестью типами дыхательных нейронов (см. рис. 8.9). Доказано, что сеть основных типов дыха­тельных нейронов продолговатого мозга способна генерировать ды­хательный ритм in vitro в срезах продолговатого мозга толщиной всего 500 мкм, помещенных в искусственную питательную среду.

 

Инспираторная активность дыхательного центра начинается с мощного стартового разряда ранних инспираторных нейронов, ко­торый появляется спонтанно за 100—200 мс до разряда в диафрагмальном нерве. В этот момент ранние инспираторные нейроны полностью освобождаются от сильного торможения со стороны постинспираторных нейронов. Полное растормаживание ранних инс­пираторных нейронов происходит в момент, когда активируются преинспираторные нейроны дыхательного центра, которые оконча­тельно блокируют разряд экспираторных нейронов.

 

Стартовый разряд ранних инспираторных нейронов начинает активировать полные инспираторные нейроны, которые способны совозбуждать друг друга. Полные инспираторные нейроны, благодаря этому свойству, поддерживают и увеличивают частоту генерации потенциалов действия в течение фазы вдоха. Именно этот тип дыхательных нейронов создает нарастающую активность в диафрагмальном и межреберных нервах, вызывая увеличение силы сокра­щения диафрагмы и наружных межреберных мышц.

 

Ранние инспираторные нейроны в силу особых физиологических свойств их мембраны прекращают генерировать потенциалы дейст­вия к середине фазы вдоха. Это моносинаптически растормаживает поздние инспираторные нейроны, поэтому их активность появляется в конце вдоха.

 

Поздние инспираторные нейроны способны дополнительно акти­вировать в конце вдоха сокращение диафрагмы и наружных меж­реберных мышц. Одновременно поздние инспираторные нейроны выполняют функцию начального выключения инспирации. В период своей активности они получают возбуждающие стимулы от легочных рецепторов растяжения, которые измеряют степень растяжения ды­хательных путей во время вдоха. Максимальный по частоте разряд поздних инспираторных нейронов приходится на момент прекраще­ния активности других типов инспираторных нейронов дыхательного центра.

 

Прекращение активности всех типов инспираторных нейронов дыхательного центра растормаживает постинспираторные нейроны. Причем процесс растормаживания постинспираторных нейронов на­чинается гораздо раньше, а именно в период убывания разрядов ранних инспираторных нейронов. С момента появления активности постинспираторных нейронов выключается инспирация и начинается фаза пассивной контролируемой экспирации. Постинспираторные нейроны регулируют степень расслабления диафрагмы в первую половину фазы выдоха. В эту фазу заторможены все другие типы нейронов дыхательного центра. Однако в постинспираторную фазу сохраняется активность респираторно-связанных нейронов дыхатель­ного центра, которые регулируют тонус мышц верхних дыхательных путей, прежде всего гортани.

 

Вторая половина фазы выдоха, или фаза активной экспирации, полностью зависит от механизма ритмогенеза инспираторнои и пост-инспираторной активности. Например, при быстрых дыхательных движениях постинспираторная фаза может непосредственно пере­ходить в фазу следующей инспирации.

 

Активность дыхательных мышц в течение трех фаз нейронной активности дыхательного центра изменяется следующим образом (см. рис. 8.11). В инспирацию мышечные волокна диафрагмы и наружных межреберных мышц постепенно увеличивают силу со­кращения. В этот же период активируются мышцы гортани, которые расширяют голосовую щель, что снижает сопротивление воздушному потоку на вдохе. Работа инспираторных мышц во время вдоха создает достаточный запас энергии, которая высвобождается в пост­инспираторную фазу, или в фазу пассивной контролируемой экс­пирации. В постинспираторную фазу дыхания объем выдыхаемого из легких воздуха контролируется медленным расслаблением диаф­рагмы и одновременным сокращением мышц гортани. Сужение го­лосовой щели в постинспираторную фазу увеличивает сопротивление воздушному потоку на выдохе. Это является очень важным физио­логическим механизмом, который препятствует спадению воздухо­носных путей легких при резком увеличении скорости воздушного потока на выдохе, например при форсированном дыхании или за­щитных рефлексах кашля и чиханья.

 

Во вторую фазу выдоха, или фазу активной экспирации, экс­пираторный поток воздуха усиливается за счет сокращения внут­ренних межреберных мышц и мышц брюшной стенки. В эту фазу отсутствует электрическая активность диафрагмы и наружных меж­реберных мышц.

 

Координация деятельности правой и левой половин дыхател







Дата добавления: 2015-12-04; просмотров: 310. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия