Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Находим определитель исходной матрицы.





2.Если │А│=0, то матрица А вырожденная и обратной матрицы А-1 не существует.

Если определитель матрицы А не равен нулю, то обратная матрица существует.

3. Находим АT, транспонированную к А.

4. Находим алгебраические дополнения элементов транспонированной матрицы и составляем из них присоединенную матрицу. 5. Вычисляем обратную матрицу по формуле: 6. Проверяем правильность вычисления обратной матрицы, исходя из её определения А-1∙А = А ∙А-1 = Е.

26. N-мерное линейное векторное пространство

Векторное пространство R, называется n-мерным, если в нем существует n линейно независимых векторов, а любые n +1 векторов уже являются зависимыми.

Число n называется размерностью векторного пространство R иобозначается dim(R).

Совокупность n линейно независимых векторов n-мерного пространства R называется базисом.

Теорема. Каждый вектор Х векторного пространства R можно представить, и притом единственным способом, в виде линейной комбинации векторов базиса.

27. Системы векторов, операции над ними.

N-мерным вектором называется упорядоченная совокупность n действительных чисел, записываемых в виде Х =(х 1, х 2,… х n), где хii -я компонента вектора Х.

Два n-мерных вектора равны тогда и только тогда, когда равны их соответствующие компоненты, т.е. Х=У, если xi=yi, i=1…n.

Суммой двух векторов одинаковой размерности n называется вектор Z=X+Y, компоненты которого равны сумме соответствующих компонент слагаемых векторов, т.е. zi=xi+yi, i=1…n.

Произведением вектора Х на действительное число λ называется вектор V=λX, компоненты которого равны произведению λ на соответствующие компоненты вектора Х, т.е. vi=λxi, i=1…n.

Линейные операции над векторами удовлетворяют следующим свойствам:

Х + У = У + Х;

(Х + У) + Z = X + (Y + Z);

a (bX) = (ab) X;

a (X + Y) = aX + aY;

(a + b) X = aX + bX;

Существует нулевой вектор О=(0,0,…0) такой, что Х + О = Х, для любого Х;

Для любого вектора Х существует противоположный вектор (- Х) такой, что Х + (- Х) = О;

1∙ Х = Х для любого Х.

Определение Множество векторов с действительными компонентами, в котором определены операции сложения векторов и умножения

· №28

· В матрице размера m x n вычеркиванием каких-либо строк и столбцов можно выделить квадратные подматрицы k-го порядка, где k≤min(m; n). Определители таких подматриц называются минорами k-го порядка матрицы А.

· Рангом матрицы А называется наивысший порядок отличных от нуля миноров этой матрицы.

· Ранг матрицы А обозначается rang A или r(A).

· Из определения следует:

· 1) ранг матрицы размера m x n не превосходит меньшего из её размеров, т.е. r(A) ≤ min (m; n).

· 2) r(A)=0 тогда и только тогда, когда все элементы матрицы равны нулю, т.е. А=0.

· 3) Для квадратной матрицы n-го порядка r(A) = n тогда и только тогда, когда матрица А – невырожденная.

· В общем случае определение ранга матрицы перебором всех миноров достаточно трудоемко. Для облегчения этой задачи используются элементарные преобразования, сохраняющие ранг матрицы:

· 1) Отбрасывание нулевой строки (столбца).

· 2) Умножение всех элементов строки (столбца) матрицы на число, не равное нулю.

· 3) Изменение порядка строк (столбцов) матрицы.

· 4) Прибавление к каждому элементу одной строки (столбца) соответствующих элементов другой строки (столбца), умноженных на любое число.

· 5) Транспонирование матрицы.

· Теорема. Ранг матрицы не изменится при элементарных преобразованиях матрицы.

 

№29







Дата добавления: 2015-12-04; просмотров: 199. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Реостаты и резисторы силовой цепи. Реостаты и резисторы силовой цепи. Резисторы и реостаты предназначены для ограничения тока в электрических цепях. В зависимости от назначения различают пусковые...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия