Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Необходимое условие экстремума функции двух переменных





Теорема

Если функция имеет в точке экстремум, и в этой точке существуют частные производные первого порядка, то в этой точке частные производные первого порядка равны 0, т.е. .

Доказательство

1. Докажем что равна нулю частная производная по переменной в точке , если – точка экстремума функции.

2. Для этого рассмотрим в окрестности точки только те точки, для которых , т.е. фиксируем.

3. Тогда функция может быть рассмотрена как функция одной переменной , которая имеет экстремум в точке и имеет производную .

4. Для функции одной переменной выполняется необходимое условие экстремума функции одной переменной: .

5. Аналогично функцию можно рассмотреть как функцию одной переменной и доказать, что частная производная по переменной : в точке тоже равна нулю, т.е. . ч.т.д.

Определение 1. Внутренние точки окрестности точки , удовлетворяющие системе уравнений:

,

называются стационарными точками функции для любой упорядоченной пары из - окрестности точки , т.е. .

Определение 2. Подозрительные на локальный экстремум являются критические точки, в которых хотя бы одна из частных производных , не существует или если они обе существуют, то равны нулю[1].

№13 Неопределенный интеграл, основные теоремы.

Определение: совокупность всех первообразных у=f(х) на промежутке Х, называется неопределенным интегралом.

Основные теоремы:

— производная от неопределенного интеграла равна подынтегральной функции

— дифференциалом неопределенного интеграла является подынтегральное выражение

— неопределенный интеграл от дифференциала некоторой функции равен этой функции с точностью до последнего слагаемого

— постоянный множитель можно выносить за знак интеграла

— интеграл от алгебраической суммы равен сумме интегралов

— интеграл от произведения равен произведению интегралов

— интеграл от частного равен частному интегралов

Совокупность всех первообразных для функции f (х) на промежутке Х называется неопределенным интегралом от функции f (х) и обозначается ò f (х) dx, где ò - знак интеграла, f (х) – подынтегральная функция, f (х) dx – подынтегральное выражение.

Производная от неопределенного интеграла равна подынтегральной функции, т.е. (ò f (х) dx) ¢= f (х).

Дифференциал неопределенного интеграла равен подынтегральному выражению, т.е. d (ò f (х) dx) = f (х) dх.







Дата добавления: 2015-12-04; просмотров: 212. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия