ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ. ОБЩАЯ ХАРАКТЕРИСТИКА, СОСТАВ И НАЗНАЧЕНИЕ ОСНОВНЫХ ВИДОВ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ КОМПЬЮТЕРА
Программное обеспечение — это совокупность программ, позволяющих осуществить на компьютере автоматизированную обработку информации. Программное обеспечение делится на системное (общее) и прикладное (специальное). Системное программное обеспечение обеспечивает функционирование и обслуживание компьютера, а также автоматизацию процесса создания новых программ. К системному программному обеспечению относятся: операционные системы и их пользовательский интерфейс; инструментальные программные средства; системы технического обслуживания. Операционная система — обязательная часть специального программного обеспечения, обеспечивающая эффективное функционирование персонального компьютерра в различных режимах, организующая выполнение программ и взаимодействие пользователя и внешних устройств с ЭВМ. Пользовательский интерфейс (сервисные программы) — это программные надстройки операционной системы (оболочки и среды), предназначенные для упрощения общения пользователя с операционной системой. Программы, обеспечивающие интерфейс, сохраняют форму общения (диалог) пользователя с операционной системой, но изменяют язык общения (обычно язык команд преобразуется в язык меню). Сервисные системы условно можно разделить на интерфейсные системы, оболочки операционных систем и утилиты. Интерфейсные системы — это мощные сервисные системы, чаще всего графического типа, совершенствующие не только пользовательский, но и программный интерфейс операционных систем, в частности, реализующие некоторые дополнительные процедуры разделения дополнительных ресурсов. Оболочки операционных систем предоставляют пользователю качественно новый по сравнению с реализуемым операционной системой интерфейс и делают необязательным знание последнего. Утилиты автоматизируют выполнение отдельных типовых, часто используемых процедур, реализация которых потребовала бы от пользователя разработки специальных программ. Многие утилиты имеют развитый диалоговый интерфейс с пользователем и приближаются по уровню общения к оболочкам. Инструментальные программные средства (системы программирования) — обязательная часть программного обеспечения, с использованием которой создаются программы. Инструментальные программные средства включают в свой состав средства написания программ (текстовые редакторы); средства преобразования программ в вид, пригодный для выполнения на компьютере (ассемблеры, компиляторы, интерпретаторы, загрузчики и редакторы связей), средства контроля и отладки программ. Текстовые редакторы позволяют удобно редактировать, формировать и объединять тексты программ, а некоторые — и контролировать синтаксис создаваемых программ. Программа, написанная на алгоритмическом языке, должна быть преобразована в объектный модуль, записанный на машинном языке (в двоичных кодах). Подобное преобразование выполняется трансляторами (ассемблером — с языка Assembler и компиляторами — с языков высокого уровня). Для некоторых алгоритмических языков используются интерпретаторы, не создающие объектный модуль, а при каждом очередном выполнении программы переводящие каждую ее отдельную строку или оператор на машинный язык. Объектный модуль обрабатывается загрузчиком — редактором связей, преобразующие его в исполняемую машинную программу. Средства отладки позволяют выполнять трассировку программ (пошаговое выполнение с выдачей информации о результатах исполнения), производить проверку синтаксиса программы и промежуточных результатов в точках останова, осуществлять модификацию значений переменных в этих точках. Системы технического и сервисного обслуживания представляют собой программные средства контроля, диагностики и восстановления работоспособности компьютера, дисков и т. д. Прикладное программное обеспечение обеспечивает грешение пользовательских задач. Ключевым понятием здесь является пакет прикладных программ. Пакет прикладных программ — это совокупность программ для решения круга задач по определенной тематике или предмету. Различают следующие типы пакетов прикладных программ: 1. общего назначения — ориентированы на автоматизацию широкого круга задач пользователя (текстовые процессоры, табличные редакторы, системы управления базами данных, графические процессоры, издательские системы, системы автоматизации проектирования и т. д.); 2. методо-ориентированные — реализация разнообразных экономико-математических методов решения задач (математического программирования, сетевого планирования и управления, теории массового обслуживания, математической статистики и т. д.); 3. проблемно-ориентированные — направлены на решение определенной задачи (проблемы) в конкретной предметной области (банковские пакеты, пакеты бухгалтерского учета, финансового менеджмента, правовых справочных систем и т. д.). К прикладному программному обеспечению относятся сервисные программные средства, которые служат для организации удобной рабочей среды пользователя, а также для выполнения вспомогательных функций (информационные менеджеры, переводчики и т. д.). Паке́т прикладны́х програ́мм (аббр. ППП, англ. application package [1]) или паке́т програ́мм — набор взаимосвязанных модулей, предназначенных для решения задач определённого класса некоторой предметной области. По смыслу ППП было бы правильнее назвать пакетом модулей вместо устоявшегося термина пакет программ. Отличается от библиотеки тем, что создание библиотеки не ставит целью полностью покрыть нужды предметной области, так как приложение может использовать модули нескольких библиотек. Требования же к пакету программ жёстче: приложение для решения задачи должно использовать только модули пакета, а создание конкретного приложения может быть доступно непрограммистам[2]. Пакетному подходу можно противопоставить создание «универсальной» программы. Такая программа может участвовать в решении различных задач, тогда как в пакетном подходе несколько модулей пакета объединяются для решения одной задачи. Разница может показаться небольшой (из пакета программ можно, добавив управляющую надстройку, сделать «универсальную» программу, или наоборот, использовать некоторые модули «универсальной» программы в качестве ППП). Тем не менее с точки зрения архитектуры ППП более удобен для расширения и модификации, так как развитие ППП может происходить за счёт добавления новых модулей, не затрагивающих работоспособность ранее отлаженных модулей[2].
Цепочечный подход [править] Проще всего проиллюстрировать пакетный подход на примере конвейера в Unix. Система Unix содержит большое количество небольших программ, выполняющих конкретную функцию. В конвейере входящие в цепочку программы могут обрабатывать некоторые данные[3]. В следующем примере данные об объёмах хранящихся в текущем каталоге подкаталогов вычисляются (команда du), сортируются (sort), выбираются 10 занимающих наибольший объём (tail), отбрасывается первое поле с числом (cut) и результат печатается на принтере (lpr): Цепочечный подход в ряде случаев можно автоматизировать, поручив построение цепочки системным средствам пакета[3]. Помимо перечислительного механизма к созданию цепочки (явное задание входящих в цепочку модулей), возможен ассоциативный механизм, при котором модуль включается системными средствами в формируемую программу на основании некоторого атрибута. В случае, когда пользователь задаёт известные и искомые величины, восстановление цепочки средствами системы называется автоматическим планированием вычислений. Несмотря на некоторые достоинства и отдельные успехи (системы ПРИЗ и СПОРА), автоматическое планирование вычислений не получило массового развития по причине бедности цепочки как конфигурационного ориентира [4]. Каркасный подход [править] При накоплении опыта программирования в любой предметной области со временем вырабатывается представления о рациональной модульной организации, накапливается набор модулей, которые сильно не изменяются при переходе от одной версии программ к другой, а также находятся постоянные места для сменных модулей. В результате вырисовывается архитектура приложения, состоящая из постоянного компонента — каркаса, имеющего гнёзда для размещения сменных модулей[5]. Разумеется, гнёзда и сменные модули имеют согласованные спецификации. Задание конкретной конфигурации для пользователя упрощается. Гнёзда каркаса — отражение характеристик решаемой задачи, в сменные модули — допустимые значения этих характеристик[5]. Например, в каркасе с двумя вариантными гнёздами может описать конфигурацию расчёта, не касаясь алгоритма задачи: Материал ← Алюминий, Точность ← Двойная. В отличие от цепочечного, каркасный подход даёт больше свободы в проектировании структуры формируемой программы, что является предпочтительным для большинства предметных областей[5]. Виды пакетов [править] Можно выделить следующие виды ППП[6]: · Общего назначения. Примеры: текстовый процессор, электронные таблицы, графический редактор, СУБД · Офисные пакеты. Для обеспечения деятельности офиса. Включают органайзеры, средства OCR и т. п. · Проблемно-ориентированные. Для предметных областей, в которых возможна типизация структур данных, алгоритмов обработки и функций управления. Примеры: бухгалтерский учёт, управление персоналом. · САПР · Настольная издательская система · Системы искусственного интеллекта. Системы с диалогом на естественном языке, экспертные системы и т. п. Операцио́нная систе́ма, сокр. ОС (англ. operating system, OS) — комплекс управляющих и обрабатывающих программ, которые, с одной стороны, выступают как интерфейс между устройствами вычислительной системы и прикладными программами, а с другой стороны — предназначены для управления устройствами, управления вычислительными процессами, эффективного распределения вычислительных ресурсов между вычислительными процессами и организации надёжных вычислений. Это определение применимо к большинству современных операционных систем общего назначения. В логической структуре типичной вычислительной системы операционная система занимает положение между устройствами с их микроархитектурой, машинным языком и, возможно, собственными (встроенными) микропрограммами — с одной стороны — и прикладными программами с другой. Разработчикам программного обеспечения операционная система позволяет абстрагироваться от деталей реализации и функционирования устройств, предоставляя минимально необходимый набор функций (см.: интерфейс программирования приложений). В большинстве вычислительных систем операционная система является основной, наиболее важной (а иногда и единственной) частью системного программного обеспечения. С 1990-х годов наиболее распространёнными операционными системами являются системы семейства Windows и системы класса UNIX (особенно Linux и Mac OS). Схема, иллюстрирующая место операционной системы в многоуровневой структуре компьютера Функции [править] Основные функции: · Исполнение запросов программ (ввод и вывод данных, запуск и остановка других программ, выделение и освобождение дополнительной памяти и др.). · Загрузка программ в оперативную память и их выполнение. · Стандартизованный доступ к периферийным устройствам (устройства ввода-вывода). · Управление оперативной памятью (распределение между процессами, организация виртуальной памяти). · Управление доступом к данным на энергонезависимых носителях (таких как жёсткий диск, оптические диски и др.), организованным в той или иной файловой системе. · Обеспечение пользовательского интерфейса. · Сохранение информации об ошибках системы. Дополнительные функции: · Параллельное или псевдопараллельное выполнение задач (многозадачность). · Эффективное распределение ресурсов вычислительной системы между процессами. · Разграничение доступа различных процессов к ресурсам. · Организация надёжных вычислений (невозможности одного вычислительного процесса намеренно или по ошибке повлиять на вычисления в другом процессе), основана на разграничении доступа к ресурсам. · Взаимодействие между процессами: обмен данными, взаимная синхронизация. · Защита самой системы, а также пользовательских данных и программ от действий пользователей (злонамеренных или по незнанию) или приложений. · Многопользовательский режим работы и разграничение прав доступа (см.: аутентификация, авторизация). Компоненты операционной системы: · Загрузчик · Ядро · Командный процессор (интерпретатор) · Драйверы устройств · Интерфейс Понятие [править] Существуют две группы определений операционной системы: «набор программ, управляющих оборудованием» и «набор программ, управляющих другими программами». Обе они имеют свой точный технический смысл, который связан с вопросом, в каких случаях требуется операционная система. Есть приложения вычислительной техники, для которых операционные системы излишни. Например, встроенные микрокомпьютеры, содержащиеся во многих бытовых приборах, автомобилях (иногда по десятку в каждом), простейших сотовых телефонах, постоянно исполняют лишь одну программу, запускающуюся по включении. Многие простые игровые приставки — также представляющие собой специализированные микрокомпьютеры — могут обходиться без операционной системы, запуская при включении программу, записанную на вставленном в устройство «картридже» или компакт-диске. Операционные системы нужны, если: · вычислительная система используется для различных задач, причём программы, решающие эти задачи, нуждаются в сохранении данных и обмене ими. Из этого следует необходимость универсального механизма сохранения данных; в подавляющем большинстве случаев операционная система отвечает на неё реализацией файловой системы. Современные системы, кроме того, предоставляют возможность непосредственно «связать» вывод одной программы со вводом другой, минуя относительно медленные дисковые операции; · различные программы нуждаются в выполнении одних и тех же рутинных действий. Например, простой ввод символа с клавиатуры и отображение его на экране может потребовать исполнения сотен машинных команд, а дисковая операция — тысяч. Чтобы не программировать их каждый раз заново, операционные системы предоставляют системные библиотеки часто используемых подпрограмм (функций); · между программами и пользователями системы необходимо распределять полномочия, чтобы пользователи могли защищать свои данные от несанкционированного доступа, а возможная ошибка в программе не вызывала тотальных неприятностей; · необходима возможность имитации «одновременного» исполнения нескольких программ на одном компьютере (даже содержащем лишь один процессор), осуществляемой с помощью приёма, известного как «разделение времени». При этом специальный компонент, называемый планировщиком, делит процессорное время на короткие отрезки и предоставляет их поочерёдно различным исполняющимся программам (процессам); · оператор должен иметь возможность так или иначе управлять процессами выполнения отдельных программ. Для этого служат операционные среды — оболочка и наборы утилит — они могут являться частью операционной системы. Таким образом, современные универсальные операционные системы можно охарактеризовать, прежде всего, как: · использующие файловые системы (с универсальным механизмом доступа к данным), · многопользовательские (с разделением полномочий), · многозадачные (с разделением времени). Многозадачность и распределение полномочий требуют определённой иерархии привилегий компонентов самой операционной системе. В составе операционной системы различают три группы компонентов: · ядро, содержащее планировщик; драйверы устройств, непосредственно управляющие оборудованием; сетевая подсистема, файловая система; · системные библиотеки; · оболочка с утилитами. Большинство программ, как системных (входящих в операционную систему), так и прикладных, исполняются в непривилегированном («пользовательском») режиме работы процессора и получают доступ к оборудованию (и, при необходимости, к другим ресурсам ядра, а также ресурсам иных программ) только посредством системных вызовов. Ядро исполняется в привилегированном режиме: именно в этом смысле говорят, что система (точнее, её ядро) управляет оборудованием. В определении состава операционной системы значение имеет критерий операциональной целостности (замкнутости): система должна позволять полноценно использовать (включая модификацию) свои компоненты. Поэтому в полный состав операционной системы включают и набор инструментальных средств (от текстовых редакторов до компиляторов, отладчиков и компоновщиков). Ядро [править] Основная статья: Ядро операционной системы Ядро — центральная часть операционной системы, управляющая выполнением процессов, ресурсами вычислительной системы и предоставляющая процессам координированный доступ к этим ресурсам. Основными ресурсами являютсяпроцессорное время, память и устройства ввода-вывода. Доступ к файловой системе и сетевое взаимодействие также могут быть реализованы на уровне ядра. Как основополагающий элемент операционной системы, ядро представляет собой наиболее низкий уровень абстракции для доступа приложений к ресурсам вычислительной системы, необходимым для их работы. Как правило, ядро предоставляет такой доступ исполняемым процессам соответствующих приложений за счёт использования механизмов межпроцессного взаимодействия и обращения приложений к системным вызовам ОС. Описанная задача может различаться в зависимости от типа архитектуры ядра и способа её реализации. Объекты ядра ОС: · Процессы · Файлы · События · Потоки · Семафоры · Мьютексы · Каналы · Файлы, проецируемые в память Эволюция и основные идеи [править] Предшественником операционных систем следует считать служебные программы (загрузчики и мониторы), а также библиотеки часто используемых подпрограмм, начавшие разрабатываться с появлением универсальных компьютеров 1-го поколения (конец 1940-х годов). Служебные программы минимизировали физические манипуляции оператора с оборудованием, а библиотеки позволяли избежать многократного программирования одних и тех же действий (осуществления операций ввода-вывода, вычисления математических функций и т. п.). В 1950—1960-х годах сформировались и были реализованы основные идеи, определяющие функциональность ОС: пакетный режим, разделение времени и многозадачность, разделение полномочий, реальный масштаб времени, файловые структуры и файловые системы. Пакетный режим [править] Необходимость оптимального использования дорогостоящих вычислительных ресурсов привела к появлению концепции «пакетного режима» исполнения программ. Пакетный режим предполагает наличие очереди программ на исполнение, причём система может обеспечивать загрузку программы с внешних носителей данных в оперативную память, не дожидаясь завершения исполнения предыдущей программы, что позволяет избежать простоя процессора. Разделение времени и многозадачность [править] Уже пакетный режим в своём развитом варианте требует разделения процессорного времени между выполнением нескольких программ. Необходимость в разделении времени (многозадачности, мультипрограммировании) проявилась ещё сильнее при распространении в качестве устройств ввода-вывода телетайпов (а позднее, терминалов с электронно-лучевыми дисплеями) (1960-е годы). Поскольку скорость клавиатурного ввода (и даже чтения с экрана) данных оператором много ниже, чем скорость обработки этих данных компьютером, использование компьютера в «монопольном» режиме (с одним оператором) могло привести к простою дорогостоящих вычислительных ресурсов. Разделение времени позволило создать «многопользовательские» системы, в которых один (как правило) центральный процессор и блок оперативной памяти соединялся с многочисленными терминалами. При этом часть задач (таких как ввод или редактирование данных оператором) могла исполняться в режиме диалога, а другие задачи (такие как массивные вычисления) — в пакетном режиме. Разделение полномочий [править] Распространение многопользовательских систем потребовало решения задачи разделения полномочий, позволяющей избежать возможности изменения исполняемой программы или данных одной программы в памяти компьютера другой программой (намеренно или по ошибке), а также изменения самой системы прикладной программой. Реализация разделения полномочий в операционных системах была поддержана разработчиками процессоров, предложивших архитектуры с двумя режимами работы процессора — «реальным» (в котором исполняемой программе доступно всё адресное пространство компьютера) и «защищённым» (в котором доступность адресного пространства ограничена диапазоном, выделенным при запуске программы на исполнение). Реальный масштаб времени [править] Основная статья: Операционная система реального времени Применение универсальных компьютеров для управления производственными процессами потребовало реализации «реального масштаба времени» («реального времени») — синхронизации исполнения программ с внешними физическими процессами. Включение функции реального масштаба времени позволило создавать решения, одновременно обслуживающие производственные процессы и решающие другие задачи (в пакетном режиме и/или в режиме разделения времени). Файловые системы и структуры [править] Постепенная замена носителей с последовательным доступом (перфолент, перфокарт и магнитных лент) накопителями произвольного доступа (на магнитных дисках). Файловая система — способ хранения данных на внешних запоминающих устройствах. Вопрос
|