Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПАРАМЕТРЫ СТАТИСТИЧЕСКИХ РАСПРЕДЕЛЕНИЙ





Математическое ожидание (среднее значение) EX случайной величины X. Представляет собой интеграл вида:

.

Для непрерывной случайной величины может быть выражено также через плотность ее распределения:

,

а для дискретной случайной величины - через функцию вероятности:

.

Дисперсия также называется рассеяние случайной величины X, имеет вид:

.

В классических методах теории риска дисперсия часто использовалась в качестве меры риска, измерителя рискованности проектов.

 

Стандартное отклонение случайной величины X задается выражением

.

Асимметрия распределения случайной величины X:

.

характеризует различие "хвостов" распределения. Асимметрия положительна при более тяжелом правом хвосте, и отрицательна при более тяжелом левом хвосте. Для симметричных распределений асимметрия равна нулю.

Островершинность (эксцесс) распределения случайной величины X:

.

характеризует тяжесть "хвостов" распределения. Положительные значения этого параметра соответствуют распределениям с более тяжелыми хвостами, чем у нормального распределения.

 

Медианой a = med(X) распределения случайной величины X называется корень уравнения:

.

Медиана является средней характеристикой распределения в том смысле, что X с равными вероятностями принимает значения, лежащие справа и слева от a. Преимуществом медианы перед математическим ожиданием является тот факт, что математическое ожидание может быть неопределенным, если задающий его интеграл (в дискретном случае - ряд) расходится, как, например, в случае распределения Коши. Недостатком медианы является ее возможная неоднозначность для дискретных распределений. Медиана симметричного распределения совпадает с его средним значением (если последнее существует).

Модой распределения называется наиболее вероятное значение случайной величины: в непрерывном случае - точка максимума плотности распределения, в дискретном случае - точка максимума функции вероятности. Мода распределения может быть неоднозначной, и использование этого параметра в теории риска ограничено.








Дата добавления: 2015-12-04; просмотров: 264. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия