КЛАССИФИКАЦИЯ ВЫСОКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИЙ
Классификация высокомолекулярных соединений может проводиться по различным признакам. Ниже приводится несколько видов классификации высокомолекулярных соединений по важнейшим характерным признакам. 1. По происхождению высокомолекулярные соединения подразделяют: 1) на природные (натуральные или естественные). Характер 2) искусственные, получаемые путем химической обработки 3) синтетические, представляющие собой продукты процессов Глава 7 Пластические массы и изделия на их основе
2. По природе высокомолекулярные соединения подразделя 1) на органические, в состав которых входят атомы углеро 2) неорганические, к которым можно отнести соединения на 3) элементоорганические, к числу которых относятся высо 3. По типу реакций получения высокомолекулярные соединения 1) на полимеризационные, получаемые из низкомолекуляр 2) поликонденсационные, получаемые из низкомолекулярных 4. По отношению к действию повышенных температур высо
1) на термопластичные - высокомолекулярные соединения, 2) термореактивные - высокомолекулярные соединения, пере 5. В зависимости от состава основной (главной) цепи высоко 1) карбоцепные высокомолекулярные соединения, основная 2) гетероцепные - высокомолекулярные соединения, в основ 6. По структуре макромолекул высокомолекулярные соедине 2) на линейные, характеризующиеся молекулами вытянутой или зигзагообразной формы без боковых ответвлений или с ответвлениями малой длины. Представителями этого класса являются полиэтилен, поливинилхлорид, полиамиды, полистиролы и др.; 2) разветвленные высокомолекулярные соединения, у которых 3) пространственные (сетчатые, трехмерносшитые) высоко Глава 7 Пластические массы и изделия на их основе
отрезки макромолекул. Представителями этого класса соединений являются отвержденные феноло-формальдегидые, эпоксидные, карбамидные смолы, сшитые (вулканизированные) каучуки (резины, эбонит) и др. Классифицировать высокомолекулярные соединения можно и по ряду других признаков, например: по отношению к воде (гидрофильные и гидрофобные), по форме макромолекул, по пространственному расположению боковых цепей и т, д. СИНТЕЗ ВЫСОКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИЙ Природные (естественные) органические высокомолекулярные соединения образуются в процессе биосинтеза в клетках растений и живых организмов и для использования выделяются из растительного и животного сырья с помощью экстракции, фракционного осаждения и других методов. Природные неорганические высокомолекулярные соединения образуются в результате геохимических процессов, происходящих в земной коре. Искусственные высокомолекулярные соединения получают путем химической модификации природных высокомолекулярных соединений за счет протекания химических реакций природного полимера с различными химическими агентами. Так, например, сырьем для целого ряда искусственных высокомолекулярных соединений служат целлюлоза древесины и хлопковая целлюлоза, при обработке которых смесью азотной и серной кислот получают нитраты целлюлозы, один из которых - коллоксилин используется в качестве основного компонента (связующего) для получения целлулоида, этрола, целлюлозных пленок и лаков. При взаимодействии целлюлозы с уксусным ангидридом получаются уксуснокислые эфиры целлюлозы - ацетаты целлюлозы, которые используются для получения ацетатного шелка, ацетил-целлюлозного этрола, кинопленок и лаков. Синтетические высокомолекулярные соединения получают из низкомолекулярных веществ - мономеров - по реакциям полимеризации или поликонденсации. Синтез высокомолекулярного вещества из низкомолекулярных веществ (мономеров) возможен лишь только в том случае, если мо'лекула мономера может взаимодействовать по крайней мере с двумя другими молекулами, т. е. если исходное вещество имеет в своей структуре двойные связи или является по меньшей мере бифункциональным, т. е. содержит не менее двух функциональных групп, которые могут взаимодействовать между собой. К функциональным группам относятся кислород-азот-серосодержащие группы типа Примером монофункциональных соединений является, например, этиловый спирт (С2Н5ОН), метиламин (СН3МН2). К бифункциональным соединениям, например, относятся этиленгликоль (НО — СН2 — СН2 — ОН), гексаметилендиамин (Н2М-(СК2)6-№12). Примером трифункциональных соединений является, например, глицерин: Высокоактивными мономерами, достаточно легко вступающими в реакции образования высокомолекулярных соединений, являются также вещества, содержащие двойные связи, например: этилен (СН2 - СН2), бутадиен-1,3 (СН2 = СН — СН = СН2) и др. Если через А обозначить молекулу мономера, то упрощенно синтез высокомолекулярных соединений можно представить схемой: п А -> — А' — А' — А' — А' —.. „ где А' - элементарное звено макромолекулы, которое по своему химическому (элементарному) составу либо аналогично элемен- Пластические массы и изделия на их основе тарному составу мономера (в случае протекания реакции полимеризации), либо отличается от него (в случае реакции поликонденсации). В настоящее время химия высокомолекулярных соединений располагает методами синтеза веществ, построенных как из одинаковых, многократно повторяющихся звеньев (—-А — А — А-— А —), так и из различных беспорядочно расположенных звеньев (— А — В — В — А — В — А — А — А —,). Возможен и синтез высокомолекулярных веществ, построенных из различных элементарных звеньев, но со строго определенным их расположением. Правда, следует отметить, что такой синтез технологически достаточно труден. Характерной особенностью высокомолекулярных соединений является влияние условий проведения синтеза на свойства образующегося продукта. Этим синтез высокомолекулярных соединений отличается от синтеза низкомолекулярных веществ, где изменение условий проведения реакции влияет только на количественный выход продукта. Это связано с тем, что при синтезе низкомолекулярных веществ в результате каждого реакционного акта образуются не связанные друг с другом молекулы нового вещества, поэтому от числа элементарных реакций зависит лишь количество вновь образовавшихся молекул, т. е. количественный выход синтезированного продукта. При синтезе же высокомолекулярного соединения промежуточный продукт, образовавшийся в результате элементарных реакций, принимает участие в последующих элементарных реакциях, и результатом всех этих процессов является одна общая большая макромолекула. В зависимости от метода и условий синтеза высокомолекулярного соединения изменяется его средняя молекулярная масса, а также количество макромолекул различной длины (изменяется полидисперсность полимера). 'Величина средней молекулярной массы и степень полидисперсности влияют на возможность формирования физической струк- 374 туры высокомолекулярного соединения, его физико-химические и физико-механические свойства. Вследствие этого кинетика реакции образования высокомолекулярных соединений приобретает особенно важное значение. В настоящее время известно четыре основных метода синтеза высокомолекулярных соединений: 1) полимеризация; 2) поли конденсация; 3) ступенчатая полимеризация; 4) реакции превращения. Наиболее распространенными из них являются два первых метода. Полимеризация представляет собой цепную реакцию получения высокомолекулярных соединений, в ходе которой молекулы мономера последовательно присоединяются к активному центру, находящемуся на конце растущей цепи. Реакция полимеризации характерна для соединений с двойными связями, число и характер которых в молекуле мономера могут быть различными. Простейшим примером такой реакции является полимеризация олефинов или их производных в результате раскрытия двойных связей:
СН2 —СН2- Полимеризоваться могут также мономеры, содержащие в молекуле две или более двойных связей (полиены), тройные связи (производные ацетилена) и др. Например: п СН2 = СН — СП = СН2 -» — [ — СН2 —СН - СП — СН2— ]я. При протекании реакций полимеризации всегда наблюдается снижение количества двойных связей в реагирующих веществах, уменьшение общего числа молекул в системе и увеличение их средней молекулярной массы. В результате полимеризации непредельных углеводородов образуются карбоцепные полимеры. _________________________ Глава 7_____________________ Полимеризация не сопровождается выделением побочных продуктов и, следовательно, протекает без изменения элементарного состава реагирующих веществ. Как всякая цепная реакция, процесс полимеризации состоит по крайней мере из трех основных элементарных стадий. 1. Образование активного центра, связанное с инициированием мо 2. Рост цепи, характеризующийся ростом макромолекул и пе 3. Обрыв цепи, связанный с гибелью активного центра в результате реакции с другим активным центром или каким-либо иным веществом. Активными центрами в реакциях полимеризации могут являться либо свободный радикал, либо ион. В зависимости от этого различают радикальную и ионную полимеризацию. При радикальной полимеризации активными центрами являются свободные радикалы - электронейтральные частицы, имеющие один или два неспаренных электрона, благодаря чему свободные радикалы легко вступают в реакции с различными мономерами. Образование свободных радикалов может быть связано с превращением мономера в первичный радикал под влиянием тепловой энергии, света, ионизирующих излучений, а также за счет введения в полимеризующуюся систему свободных радикалов извне или веществ, легко распадающихся на свободные радикалы (инициаторов). В зависимости от способа образования свободных радикалов различают термическую, фотохимическую, радиационную полимеризацию, а также полимеризацию под действием химических инициаторов, в качестве которых могут применяться перекиси и другие легко распадающиеся химические соединения. При ионной полимеризации активными центрами являются положительно и отрицательно заряженные частицы - ионы, образующиеся в присутствии катализаторов, в качестве которых выступают соединения металлов, легко отдающие или принима- _ Пластические массы и изделия на их основе _ ющие электроны. В зависимости от заряда образующегося иона различают катионную и анионную полимеризацию. При катионной полимеризации растущая цепь имеет положительный заряд, при анионной полимеризации растущие цепи несут на концах цепей отрицательный заряд. В отличие от инициаторов радикальной полимеризации, катализаторы, активирующие процесс ионной полимеризации, в ходе протекающих реакций не расходуются и не входят в состав полимера. Поликонденсация - это реакция образования высокомолекулярных соединений из нескольких молекул мономеров одинакового или различного строения, протекающая по механизму замещения функциональных групп. Реакции поликонденсации протекают с выделением низкомолекулярных продуктов (воды, аммиака, спирта, хлористого водорода и др.), вследствие чего элементарный состав образующегося полимера отличается от элементарного состава исходных веществ - мономеров. Непременным условием протекания реакции поликонденсации является содержание в мономерах не менее двух функциональных групп (— ОН, — СООН, — МН2 и др.). Функциональность исходных веществ оказывает большое влияние на строение и свойства получаемых продуктов. Как указывалось ранее, однофункциональные соединения образуют лишь низкомолекулярные вещества.
При поликонденсации бифункциональных соединений образуются линейные или циклические высокомолекулярные соединения. Так, при поликонденсации двухатомных спиртов получаются линейные полиэфиры: Глава 7 Пластические массы и изделия на их основе
В том случае, если в качестве мономеров используются три-или тетрафункциональные мономеры, реакция их поликонденсации приводит к образованию пространственно-сшитых высокомолекулярных соединений. Известно несколько способов проведения реакций синтеза (полимеризации или поликонденсации) высокомолекулярных соединений: - полимеризация и поликонденсация в блоке или массе; - полимеризация и пол и конденсация в растворе; - полимеризация и поликонденсация на поверхности раздела фаз - полимеризация и поликонденсация в расплаве; - полимеризация и поликонденсация в твердой фазе; - полимеризация в газовой фазе. Синтез высокомолекулярных соединений в блоке или массе проводят в массе жидкого мономера. При этом если образующееся высокомолекулярное соединение растворимо в мономере, то по мере протекания реакции увеличивается вязкость системы, приводящая в конечном итоге к образованию монолитного блока продукта. Если получающееся высокомолекулярное соединение не растворимо или мало растворимо в мономере, то синтезируемый продукт получается в виде порошка либо пористой массы. При полимеризации или поликонденсации в растворе реакция протекает в растворителе (как правило, органическом), в котором растворяется мономер. В зависимости от растворимости получающегося высокомолекулярного соединения в выбранном растворителе он либо находится в растворе, из которого по завершении синтеза выделяется осаждением (при хорошей растворимости конечного продукта реакции), либо выпадает в осадок, если получаемое соединение не растворимо в применяемом растворителе. Межфазная поликонденсация и полимеризация проводятся на границе раздела двух несмешивающихся жидких фаз, обычно воды и углеводородов, образующих либо суспензии, либо эмульсии. Метод синтеза высокомолекулярных соединений в расплаве применяется в том случае, когда исходные вещества (мономеры) и синтезируемое высокомолекулярное вещество устойчивы при 378 температуре плавления и могут выдерживать длительное нагревание в расплаве без разложения. Достоинство этого метода - высокое качество получаемого продукта и отсутствие необходимости удалять из синтезированного соединения растворитель или другие жидкие фазы. Некоторые мономеры способны вступать в реакции поликонденсации или полимеризации не только в жидкой фазе, но и в твердом состоянии, при температурах ниже температуры плавления. Твердофазную полимеризацию инициируют обычно у-излучением или частицами высокой энергий, а реакции твердофазной поликонденсации протекают в присутствии ряда катализаторов. Полимеризация в газовой фазе - это реакция получения высокомолекулярного соединения из мономера, находящегося в газообразном состоянии. Типичным примером такой реакции является синтез полиэтилена из этилена, осуществляемый либо при высоких давлениях, либо в присутствии активных катализаторов. Каждый из применяемых методов проведения реакций синтеза высокомолекулярных соединений имеет свои достоинства и недостатки, исходя из которых и происходит выбор метода синтеза высокомолекулярного соединения, технологического режима его осуществления, с учетом требуемой чистоты получаемого продукта и технологии его переработки с целью изготовления тех или иных изделий, а также необходимости получения материалов и изделий с оптимальным комплексом потребительских свойств.
|