Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Понятие о триангуляции





Триангуляция представляет собой группу примыкающих один к другому треугольников, в которых измеряют все три угла; два или более пунктов имеют известные координаты, координаты остальных пунктов подлежат определению. Группа треугольников образует либо сплошную сеть, либо цепочку треугольников.

Координаты пунктов триангуляции как правило вычисляют на ЭВМ по программам, реализующим алгоритмы строгого уравнивания по МНК. На стадии предварительной обработки триангуляции последовательно решают треугольники один за другим. В нашем курсе геодезии мы рассмотрим решение лишь одного треугольника.

В первом треугольнике ABP (рис.2.24) известны координаты двух вершин (A и B) и его решение выполняют в следующем порядке:

Рис.2.24. Единичный треугольник триангуляции

  1. Вычисляют сумму измеренных углов ,
  2. Принимая во внимание, что в треугольнике Σβ = 180о, вычисляют угловую невязку:

  1. Поскольку

то

Это уравнение содержит три неизвестных поправки β и решить его можно лишь при наличии двух дополнительных условий.

Эти условия имеют вид:

откуда следует, что

  1. Вычисляют исправленные значения углов:

  1. Решают обратную задачу между пунктами A и B вычисляют дирекционный угол αAB и длину S3 стороны AB.
  2. По теореме синусов находят длины сторон AP и BP:

  1. Вычисляют дирекционные углы сторон AP и BP:

  1. Решают прямую геодезическую задачу из пункта A на пункт P и для контроля - из пункта B на пункт P; при этом оба решения должны совпасть.

В сплошных сетях триангуляции кроме углов в треугольниках измеряют длины отдельных сторон треугольников и дирекционные углы некоторых направлений; эти измерения выполняются с большей точностью и играют роль дополнительных исходных данных. При уравнивании сплошных сетей триангуляции в них могут возникнуть следующие условия:

  • условия фигуры,
  • условия суммы углов,
  • условия горизонта,
  • полюсные условия,
  • базисные условия,
  • условия дирекционных углов,
  • координатные условия.

Формула для подсчета количества условий в произвольной сети триангуляции имеет вид:

где n - общее количество измеренных углов в треугольниках,
k - число пунктов в сети,
g - количество избыточных исходных данных.







Дата добавления: 2015-12-04; просмотров: 231. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия