Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Відшукування двосторонньої критичної області





Двосторонню критичну область знаходять виходячи з умови, що при справедливості нульової гіпотези сума ймовірностей того, що критерій прийме значення менше або більше , буде дорівнювати прийнятому рівню значущості

.

 

Якщо критичні точки є симетричними, тоді

 

 

Розділ 15.3. Перевірка гіпотези про рівність дисперсій двох генеральних сукупностей

На практиці задача порівняння дисперсій виникає, якщо необхідно порівняти точність приладів, інструментів, методів вимірювань і т.п. Зрозуміло, що більш точним є пристрій, що забезпечує найменше розсіювання результатів вимірювань, тобто найменшу дисперсію.

Нехай генеральні сукупності Х і У розподілені нормально. За незалежними вибірками обсягів і , що вилучені із цих генеральних сукупностей, знайдено виправлені вибіркові дисперсії і . Необхідно за виправленими дисперсіями, при заданому рівні значущості , перевірити нульову гіпотезу про рівність генеральних дисперсій розглянутих сукупностей

 

. (15.1)

 

За критерій перевірки нульової гіпотези (15.1) про рівність генеральних дисперсій, візьмемо відношення більшої виправленої дисперсії до меншої, тобто випадкову величину

. (15.2)

 

Випадкова величина має розподіл Фішера-Снедекора із степенями свободи і , де - обсяг вибірки, за якою обчислена більша виправлена дисперсія, - обсяг вибірки, за якою обчислена менша виправлена дисперсія.

Методика перевірки нульової гіпотези при конкуруючий гіпотезі

 

Для того, щоб при заданому рівні значущості, перевірити нульову гіпотезу про рівність генеральних дисперсій нормальних сукупностей, при конкуруючий гіпотезі , необхідно обчислити спостережувальне значення критерія і за таблицями критичних точок розподілу Фішера-Снедекора, за заданим рівнем значущості і числом степеней свободи і , - число степеней свободи більшої дисперсії, знайти критичну точку . Якщо , тоді немає підстав відкидати нульову гіпотезу. Якщо , тоді нульову гіпотезу відкидаємо.

 

Приклад:

За двома незалежними вибірками обсягів і , вилучених із нормальних генеральних сукупностей Х і У, знайдено виправлені вибіркові дисперсії і . При рівні значущості перевірити нульову гіпотезу при конкуруючий гіпотезі .

 

Рішення

 

Обчислимо спостережувальне значення критерія

 

.

 

За таблицею критичних точок Фішера-Снедекора за заданим рівнем значущості і числом степеней свободи і , знайдемо критичну точку

.

 

Якщо , тоді немає підстав відкидати нульову гіпотезу.

 

Методика перевірки нульової гіпотези при конкуруючий гіпотезі

 

Для того, щоб при заданому рівні значущості, перевірити нульову гіпотезу про рівність генеральних дисперсій нормальних сукупностей, при конкуруючій гіпотезі , необхідно обчислити спостережувальне значення критерія і за таблицями критичних точок розподілу Фішера-Снедекора, за заданим рівнем значущості і числом степеней свободи і , - число степеней свободи більшої дисперсії, знайти критичну точку . Якщо , тоді немає підстав відкидати нульову гіпотезу. Якщо , тоді нульову гіпотезу відкидаємо.

 

Приклад:

За двома незалежними вибірками обсягів і , вилучених з нормальних генеральних сукупностей Х і У, знайдено виправлені вибіркові дисперсії і . При рівні значущості перевірити нульову гіпотезу при конкуруючій гіпотезі .

 

Рішення

 

Обчислимо спостережувальне значення критерія

 

.

 

За таблицею критичних точок Фішера-Снедекора за заданим рівнем значущості і числом степеней свободи і , знайдемо критичну точку

.

 

Якщо , тоді немає підстав відкидати нульову гіпотезу.

 







Дата добавления: 2015-12-04; просмотров: 279. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия