Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Этапы построения прогноза по временным рядам





 

Прогнозирование экономических процессов, которые могут быть представлены одномерными временными рядами, сводится к выполнению следующих этапов:

1. Предварительный анализ данных;

2. Построение модели, т.е. выбор кривых, описывающих явление, и численное оценивание параметров модели;

3. Проверка адекватности моделей и оценка их точности;

4. Выбор лучшей модели;

5. Расчёт точечного и интервального прогноза.

Охарактеризуем некоторые из этих этапов.

При предварительном анализе данных происходит выявление аномальных отклонений, проверка наличия тренда, сглаживание временных рядов и расчёт показателей развития динамики экономических процессов.

Выявление аномальных отклонений производится с помощью критерия Ирвина:

Пусть y1, y2,..., yn – временной ряд. Вычислим значение критерия

, где .

S – несмещённое среднеквадратическое отклонение данного ряда

– выборочное среднее ряда или средний уровень ряда.

Далее проверяется гипотеза : «аномальные данные отсутствуют». По таблицам для критерия Ирвина находится , если , то yt считается нормальным; если , то yt считается аномальным. В этом случае аномальное значение исключается из ряда данных и вместо него подставляют обычно среднеарифметическое из двух соседних значений.

 

Выявление тренда обычно происходит визуальным образом и зависит от опытности исследователей. Основная цель – угадать функцию, по которой развивается процесс. Здесь требуется информация о самом явлении.

При построении модели используется понятие кривых роста. Обычно используют кривые роста, стараясь выбрать кривую максимально простого вида:

– линейный тренд;

– квадратичный тренд;

– экспоненциальный тренд.

Подборка коэффициентов и выбор моделей осуществляется на основании метода МНК (метод наименьших квадратов). Пусть – прогнозное (вычисление по модели) значение. – наблюдавшийся уровень ряда. Коэффициенты модели подбираются таким образом, чтобы сумма . Модель, для которой достигнут такой минимум, считается наилучшей. Например, при (уравнение регрессии).

Оценка качества построенной модели

Пусть построена некоторая модель, на основании которой вычислено значение

– значение, вычисленное по модели;

– наблюдение;

– остаток в определении .

Для того, чтобы модель могла считаться хорошей, необходимо доказать, что ряд остатков является случайным и подчиняется нормальному закону распределений. Для доказательства используются:

 

1. Проверка равенства нулю математического ожидания. Выдвигается основная гипотеза

: , то есть проверяется

Для проверки этой гипотезы строится критерий или случайная величина Стьюдента:

Здесь – несмещённое среднеквадратичное отклонение ряда остатков. По таблице распределения Стьюдента при (заданном) находим Если – считают, что , если – считают, что . Вероятность – является вероятностью того, что мы ошибёмся, приняв гипотезу , то есть вероятность ошибки первого рода.

 

2. Проверка условия случайности возникновения отдельных отклонений от тренда. Например, метод поворотной точки: точка считается поворотной, если она одновременно меньше или больше двух соседних значений. Считается, что остатки случайны, если поворот точки приходится на каждые 1,5 значения. Если больше или меньше, то остатки нельзя считать случайными и модель следует уточнить.

 

3. Проверка наличия или отсутствия автокорреляции в отклонении модели. Автокорреляция означает, что некоторое значение зависит от одного или нескольких своих предыдущих значений. Наличие автокорреляции проверяют с помощью критерия Дарбина-Уотсона:

Для статистики Дарбина-Уотсона также существуют таблицы критических значений. В этих таблицах указывается интервал , при попадании в который, принимается то или иное решение. В частности, если , то ряд остатков не коррелирован, если , то имеется корреляция. При имеется неопределённость, и сделать вывод о наличии или отсутствии корреляции нельзя. В случае, когда , говорят о наличии отрицательной автокорреляции. Если не удалось решить вопрос о наличии или отсутствии автокорреляции, то необходимо использовать более точные методы.

4. Соответствие ряда остатков нормальному закону распределения. Используется RS-критерий:

, где – несмещённое среднеквадратичное отклонение.

Если значения RS согласно таблице критерия попадает между критическими значениями , то гипотезу о нормальном распределении принимают, в противном случае ряд из остатков нельзя считать нормально распределённым, а модель – хорошей.

Модель считается адекватной, если выполняются все пункты.

 







Дата добавления: 2015-12-04; просмотров: 196. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия