Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Принципы построения систем единиц физических величин





 

Проблема выбора системы единиц физических величин совсем недавно не могла полностью относиться к нашему произволу. С точки зрения материалистической философии нам непросто было убедить кого-либо в том, что большой раздел естественных наук, относящийся к обеспечению единства измерений, в основе своей опирается на зависимость основных моментов от нашего сознания. Можно обсуждать, хорошо или плохо составлена система единиц физических единиц, но факт, что в основе своей любая система величин и единиц имеет произвол, связанный с человеческим сознанием, остается бесспорным.

В данном разделе на различных примерах мы рассмотрим возможности построения систем единиц физических величин, чтобы в дальнейшем при описании системы единиц СИ или каких-либо других систем можно было бы оценить положительные и отрицательные моменты каждой из них.

Прежде всего начнем с определений.

Единицы физических величин подразделяются на основные и производные. До 1995 г. имели место еще дополнительные единицы - единицы плоского и телесного угла, радиан и стерадиан,- но с целью упрощения системы эти единицы были переведены в категорию безразмерных производных единиц.

Основными физическими величинами являются величины, выбранные произвольно и независимо друг от друга.

Основные единицы выбираются так, чтобы пользуясь закономерной связью между величинами можно было бы образовать единицы других величин. Соответственно, образованные таким образом величины и единицы называются производными.

Самый главный вопрос при построении систем единиц состоит в том, сколько должно быть основных единиц или, более точно, какими принципами нужно руководствоваться при построении той или иной системы? Частично в метрологической литературе можно найти утверждение, что главный принцип системы должен состоять в минимальном количестве основных единиц. На самом деле такой подход является неверным, так как следуя этому принципу такая величина и единица может быть одна. Например, через энергию можно выразить практически любую физическую величину, т. к. в механике энергия равна:

кинетическая энергия

(1.3)

где m - масса, -о - скорость движения тела;

потенциальная энергия

(1.4)

где m - масса, д - ускорение, Н - высота (длина).

В электрических измерениях энергия заряда

(1.5)

где q - заряд, U - разность потенциалов.

В оптике и квантовой механике энергия фотона

(1.6)

где П - постоянная Планка, v - частота излучения.

В теплофизике энергия теплового движения частиц

(1.7)

где к - постоянная Больцмана, Т - температура.

Используя указанные законы и опираясь на закон сохранения энергии, можно определить любую физическую величину, независимо оттого, к каким явлениям она относится - к механическим, электрическим, оптическим или тепловым.

Для того чтобы сказанное выглядело более убедительно, рассмотрим основные механические единицы, принятые в большинстве систем - единицы длины, времени и массы. Эти величины являются основными, т. е. выбраны произвольно и независимо друг от друга. Рассмотрим теперь, какова степень этой независимости и нельзя ли сократить число произвольно выбранных основных механических единиц.

Большинство из нас привыкло к тому, что второй закон Ньютона записывается как

(1.8)

где F - сила взаимодействия, m - масса тела, а - ускорение движения, и это выражение является определением инерционной массы. С другой стороны, масса гравитационная согласно закону всемирного тяготения определяется из соотношения

(1.9)

где r - расстояние между телами и γ- гравитационная постоянная, равная

(1.10)

Рассматривая, например, равномерное движение одного тела вокруг другого по окружности, когда сила инерции Fi равна силе гравитации Fg, и учитывая, что масса m в обоих законах есть одна и та же величина, получим:

(1.11)

Далее, учитывая, что угловое ускорение ω связано с линейным выражением

(1.12)

где Т - период обращения, получим

(1.13)

Это есть выражение для третьего закона Кепплера, давно известного для движения небесных тел, т. е. мы получили связь между временем Т, длиной r и массой m в виде

(1.14)

Это означает, что достаточно положить коэффициент К равным единице, и единица массы будет определена через длину и время. Значение этого коэффициента

(1.15)

является следствием только того факта, что мы произвольно выбрали единицу массы и для приведения ситуации в соответствие с физическими законами обязаны в законе Кепплера ввести дополнительный множитель К. Приведенный пример наглядно показывает, что число основных единиц может быть изменено как в меньшую, так и в большую сторону, т. е. полностью зависит от нашего выбора, определяемого удобством практического использования системы.

Естественно, что выбрав произвольно какую-либо единицу в качестве основной, мы произвольно выбираем размер этой единицы. В механических измерениях длину, время и массу мы имеем возможность сравнивать с любыми выбранными в качестве исходных одноименными величинами. По мере развития метрологии определения размера величин основных единиц неоднократно изменялись, тем не менее ни на физических законах, ни на единстве измерений это не отразилось.

Покажем, что произвол выбора размера единицы имеет место не только для основных, произвольно выбранных величин, но и для величин производных, т. е. связанных с основным каким-либо физическим законом. В качестве примера вернемся к определениям силы через инерционные свойства тел или через гравитационные свойства. Мы предполагаем, что основными величинами являются длина, время и масса. Ничто не мешает считать равным единице коэффициент пропорциональности в законе всемирного тяготения, т. е. считать, что

(1.16)

Тогда во втором законе Ньютона мы обязаны будем ввести коэффициент пропорциональности, называемый инерционной постоянной, т. е.

(1.17)

Значение инерционной постоянной должно равняться

(1.18)

Аналогичную картину можно проследить, выражая и принимая единицу площади. Мы привыкли к тому, что единицей площади считается площадь квадрата со стороной в единицу длины - квадратный метр, квадратный сантиметр и т. д. Однако никто не запрещает в качестве единицы площади выбрать площадь круга с диаметром в 1 метр, т. е. считать, что

(1.19)

В этом случае площадь квадрата выразится

(1.20)

Такая единица площади, называемая «круглый метр», очень удобна в измерении площадей кругов. Очевидно, что «круглый метр» будет в 4/тг раз меньше «квадратного метра».

Следующий вопрос в проблеме выбора единиц системы состоит в определении целесообразности введения новых основных единиц при рассмотрении нового класса физических явлений. Начнем с электромагнитных явлений. Хорошо известно, что электрические явления опираются на закон Кулона, связывающий механические величины - силу взаимодействия и расстояния между зарядами - с электрической величиной - зарядом:

(1.21)

В законе Кулона, как и в других законах, где упоминаются векторные величины, мы опускаем единичный вектор с целью упрощения. В законе Кулона коэффициент пропорциональности равен 1. Если принять это за основу, что и сделано в некоторых системах единиц, то электрическая основная единица не нужна, т. к. единицу силы тока можно получить из соотношения

(1.22)

где q - заряд, определенный законом Кулона; t - время. Все остальные единицы электрических величин определяются из законов электростатики и электродинамики. Тем не менее в большинстве систем единиц, в том числе и в системе СИ, для электрических явлений вводится произвольно своя электрическая основная единица. В системе СИ это Ампер. Выбрав Ампер произвольно, заряд выразится из соотношения как

(1.23)

В результате повторилась ситуация, рассмотренная выше, когда одна и та же физическая величина определяется дважды. Один раз через величины механические - формула (1.21).другой раз через Ампер-формула (1.23). Такая неоднозначность заставляет ввести в закон Кулона дополнительный коэффициент, получивший название «диэлектрическая проницаемость вакуума». Закон Кулона приобретает вид:

(1.24)

О физическом смысле диэлектрической постоянной вакуума часто задают вопросы, когда хотят выяснить степень понимания сущности закона Кулона. С метрологической точки зрения все просто и понятно: вводя произвольно основную единицу электричества - ампер - мы должны принять меры к тому, чтобы имелось соответствие механических единиц, введенных ранее, их новому возможному выражению с использованием ампера.

Точно такая же ситуация может быть прослежена в температурных измерениях с введением произвольно основной единицы - Кельвина, а также в оптических измерениях с введением канделы.

Здесь подробно рассмотрена ситуация с выбором единиц основных физических величин и с выбором их размера для того, чтобы доказать суть главного принципа построения систем единиц физических единиц.

Этот принцип - удобство практического использования. Только эти ми соображениями определяется число основных единиц, выбор их размера, и все дополнительные, вторичные принципы отталкиваются от этого как от основного. Таковым, например, является известный принцип, гласящий, что в качестве основной величины нужно выбрать такую, единица которой может быть воспроизведена с наивысшей возможной точностью. Однако это желательно, но в ряде случаев нецелесообразно. В частности в механических измерениях единица частоты - герц - воспроизводится с наивысшей точностью, тем не менее в разряд основных единиц частота не попала.

В электрических измерениях точнее Ампера может быть воспроизведен Вольт - единица разности потенциалов. В оптике достигнута предельная точность в измерениях энергии путем счета квантов. По указанным причинам общепризнанность выражения величин и единиц становится преобладающей над стремлением выбрать за основную единицу ту, которая точнее всего воспроизводится.

Окончательным подтверждением выбора системы единиц на основе принципа удобства использования являются два момента.

Первый - это факт присутствия в международной системе СИ двух основных единиц количества вещества - килограмма и моля. Ничем, кроме удобства использования в химических процессах введение еще одной основной единицы - моля, - этот факт не объяснишь.

Второй - факт использования в целом ряде случаев систем единиц, отличных от системы СИ. Многие годы и десятилетия метрологи пытаются оставить одну единственную систему единиц. Тем не менее, в расчетах атомных и молекулярных структур система СИ неудобна, и люди продолжают использовать атомную систему единиц, в которой основными являются величины, определяемые размерами атома и процессами, происходящими в атоме. При рассмотрении различных систем единиц мы подробно остановимся на построении этой системы. Точно также система СИ оказывается неудобной при измерениях расстояний до космических объектов. В этой области сложилась своя специфическая система единиц и величин.

Обобщая, выбор в метрологии системы единиц физических величин в основном связан с удобством их использования и в большой степени опирается на традиции в решении проблемы обеспечения единства измерений.

 







Дата добавления: 2015-12-04; просмотров: 194. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия