Системы единиц физических величин
Основной принцип построения системы единиц - удобство использования. Для обеспечения этого принципа произвольно выбираются некоторые единицы. Произвол содержится как в выборе самих единиц ( основных единиц физических величин), так и в выборе их размера. По этой причине, определяя основные величины и их единицы, системы единиц физических величин могут быть построены самые разные. К этому следует добавить, что и производные единицы физических величин также могут определяться по-разному. Сказанное означает, что систем единиц может быть построено очень много. Остановимся на общих чертах всех систем. Основная общая черта - четкое определение сущности и физического смысла основных физических единиц и величин системы. Желательно, но, как указывалось в предыдущем разделе, необязательно, чтобы основная физическая величина могла быть воспроизведена с высокой точностью и могла быть передана средством измерения с минимальной потерей точности. Следующий важный в построении системы шаг - установить размер основных единиц, т. е. договориться и законодательно закрепить процедуру воспроизведения основной единицы. Поскольку все физические явления связаны между собой законами, записываемыми в виде уравнений, выражающими связь между физическими величинами, при установлении производных единиц, нужно выбрать определяющее соотношение для производной величины. Затем в таком выражении следует приравнять единице или другому постоянному числу коэффициент пропорциональности, входящий в определяющее соотношение. Таким образом, образуется производная единица, которой можно дать следующее определение: «Производная единица физической величины - единица, размер которой связывается с размерами основных единиц соотношениями, выражающими физические законы, или определениями соответствующих величин». При построении системы единиц, состоящей из основных и производных единиц, следует подчеркнуть два наиболее важных момента: Первое - разделение единиц физических величин на основные и производные не означает, что первые имеют какое-либо преимущество или более важны, чем последние. В разных системах основными могут быть различные единицы, и число основных единиц в системе также может быть разным. Второе - следует отличать уравнения связи между величинами и уравнения связи между их числовым и значения ми. Уравнения связи представляют собой соотношения в общем виде, не зависящие от единиц. Уравнения связи между числовыми значениями могут иметь различный вид в зависимости от выбранных единиц для каждой из величин. Например если выбрать в качестве основных величин метр, килограмм массы и секунду, то соотношения между механическими производными единицами, такими как сила, работа, энергия, скорость и т. д., будут отличаться от таковых, если основными единицами будут выбраны сантиметр, грамм, секунда или метр, тонна, секунда. Характеризуя различные системы единиц физических величин, вспомним, что первый шаг в построении систем был связан с попыткой связать основные единицы с величинами, встречающимися в природе. Так, в эпоху Великой французской революции в 1790-1791 гг. было предложено единицей длины считать одну сорокамиллионную долю земного меридиана. В 1799 г. эта единица была узаконена в виде прототипа метра - специальной платино-иридиевой линейки с делениями. Одновременно был определен килограмм как вес одного кубического дециметра воды при 4°С. Для хранения килограмма была изготовлена образцовая гиря - прототип килограмма. В качестве единицы времени была узаконена 1/86400 доля средних солнечных суток. В дальнейшем от естественного воспроизведения этих величин пришлось отказаться, поскольку процесс воспроизведения связан с большими погрешностями. Указанные единицы были закреплены законодательно по характеристикам их прототипов, а именно: единица длины определялась как расстояние между осями штрихов на платино-иридиевом прототипе метра при 0 °С; единица массы - масса платино-иридиевого прототипа килограмма; единица силы - вес той же гири в месте ее хранения в Международном бюро по мерам и весам (МБМВ) в Севре (район Парижа); единица времени - звездная секунда, составляющая 1/86400 часть звездных суток. Т. к. вследствие вращения Земли вокруг Солнца за один год звездных суток проходит на единицу больше, чем солнечных, тозвезд-ная секунда составляет 0, 99 726 957 от солнечной секунды. Эта основа всех современных систем единиц физических величин сохранилась до настоящего времени. К механическим основным единицам добавлялись тепловые (Кельвин), электрические (Ампер), оптические (кандела), химические (моль), но основа сохранилась до сих пор. Следует добавить, что развитие измерительной техники и в особенности открытие и внедрение лазеров в измерения позволили найти и узаконить новые, очень точные способы воспроизведения основных единиц физических величин. На таких моментах мы остановимся в следующих разделах, посвященных отдельным видам измерений. Здесь же кратко перечислим наиболее употребительные в естествознании XX века системы единиц, часть из которых существует до сих пор в виде внесистемных или жаргонных единиц. На территории Европы за последние десятилетия широко применялись три системы единиц: СГС (сантиметр, грамм, секунда), МКГСС (метр, килограмм-сила, секунда) и система СИ, являющаяся основной международной системой и предпочтительной на территории бывшего СССР «во всех областях науки, техники и народного хозяйства, а также при преподавании». Последняя цитата, взятая в кавычки, приведена из государственного стандарта СССР ГОСТ 9867-61 «Международная система единиц», введенного в действие с 1 января 1963 г. Подробнее на этой системе мы остановимся в следующем параграфе. Здесь лишь укажем, что основными механическими единицами в системе СИ являются метр, килограмм-масса и секунда. Система СГС существует более ста лет и очень удобна в некоторых научных и инженерных областях. Основным достоинством системы СГС является логичность и последовательность ее построения. При описании электромагнитных явлений присутствует только одна константа - скорость света. Эта система была разработана в период с 1861 по 1870 гг. Комитетом по электрическим эталонам Британии. Основана система СГС была на системе единиц немецкого математика Гаусса, который предложил метод построения системы, основанной на трех основных единицах - длины, массы и времени. Система Гаусса использовала миллиметр, миллиграмм и секунду. Для электрических и магнитных величин были предложены два различных варианта системы СГС - абсолютная электростатическая система СГСЭ и абсолютная электромагнитная система СГСМ. Всего в развитии системы СГС существовало семь различных систем, имевших в составе основных единиц сантиметр, грамм и секунду. В конце прошлого века появилась система МКГСС, основными единицами в которой являлись метр, килограмм-сила и секунда. Эта система получила широкое распространение в прикладной механике, в теплотехнике и родственных областях. У этой системы много недостатков, начиная с путаницы в названиях основной единицы - килограмма, означавшего килограмм-силу в отличие от широко используемого килограмма-массы. Для единицы массы в системе МКГСС не нашлось даже названия и ее обозначали как т. е. м. (техническая единица массы). Тем не менее система МКГСС частично используется до сих пор хотя бы в определении мощности двигателей в лошадиных силах. Лошадиная сила - мощность, равная 75 кгс м/с -до сих пор используется в технике как жаргонная единица. В 1919 г. во Франции была принята система МТС - метр, тонна, секунда. Эта система также первым советским стандартом на механические единицы, принятым в 1929 г. В 1901 г. итальянский физик П. Джорджи предложил систему механических единиц, построенную на трех механических основных единицах - метре, килограмме массы и секунде. Преимуществом этой системы было то, что ее было легко связать с абсолютной практической системой электрических и магнитных единиц, т. к. единицы работы (джоуль) и мощности (ватт) в этих системах совпадали. Так была найдена возможность использовать преимущества всеобъемлющей и удобной системы СГС со стремлением «сшить» электрические и магнитные единицы с единицами механическими. Достигнуто это было путем введения двух постоянных - электрической (ε0) проницаемости вакуума и магнитной проницаемости вакуума (μ0). Появляется некоторое неудобство в записи формул, описывающих силы взаимодействия покоящихся и движущихся электрических зарядов и, соответственно, в определении физического смысла этих констант. Однако эти недостатки в большой степени окупаются такими удобствами, как единство выражения энергии при описании как механических, так и электро-магнитных явлений, т. к. 1 джоуль = 1 ньютон, метр = 1 вольт, кулон = 1 ампер, вебер. В результате поисков оптимального варианта международной системы единиц в 1948 г. IX Генеральная конференция по мерам и весам на основе опроса стран-членов Метрической конвенции приняла вариант, в котором предлагалось в качестве основных единиц принять метр, килограмм массы и секунду. Килограмм-силу и связанные с ней производные единицы предлагалось исключить из рассмотрения. Окончательное решение на основании результатов опроса 21 страны было сформулировано на Х Генеральной конференции по мерам и весам в 1954 г. Резолюция гласила: «В качестве основных единиц практической системы для международных сношений принять: единицу длины - метр единицу массы - килограмм единицу времени - секунду единицу силы тока - Ампер единицу термодинамической температуры - градус Кельвина единицу силы света - свечу». Позднее по настоянию химиков международная система была дополнена седьмой основной единицей количества вещества - молем. В дальнейшем международная система СИ или в английской транскрипции Sl (System International) несколько уточнялась, например единица температуры получила название Кельвин вместо «градус Кельвина», система эталонов электрических единиц была переориентирована с Ампера на Вольт, поскольку был создан эталон разности потенциалов на основе квантового эффекта - эффекта Джозефсона, который позволил уменьшить погрешность воспроизведения единицы разности потенциалов - Вольта -более чем на порядок. В 1983 г. на XVIII Генеральной конференции по мерам и весам было принято новое определение метра. По новому определению метр представляет собой расстояние, проходимое светом за 1/2997925 долю секунды. Такое определение, точнее переопределение, понадобилось в связи с внедрением в эталонную технику лазеров. Следует сразу указать, что размер единицы, в данном случае метра, не изменяется. Изменяются только методы и средства ее воспроизведения, отличающиеся меньшей погрешностью (большей точностью).
|