Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Окружность





Окружность - простейшая линия второго порядка. Её уравнение было получено ранее как линии, все точки которой равно отстоят от центра.

 

(5.1)

Это уравнение называется каноническим уравнением окружности.

- координаты центра окружности, r радиус окружности.

5.2. Эллипс

Эллипсом называется множество точек плоскости, сумма расстояний от каждой из которых до двух данных точек этой плоскости, называемых фокусами, величина постоянная. Пусть точки и - фокусы эллипса и расстояние между ними равно 2 с. Сумма расстояний от любой точки эллипса обозначим 2 а. 2 а>;2 са> с. (См. рис. 5.1.а).

Пусть фокусы (точки и лежат на оси 0 x, а начало координат находится посередине отрезка . и пусть точка - текущая точка эллипса.

, т.е. .

 

Приведем полученное уравнение эллипса к канонической форме.

 

.

Положим . Тогда уравнение принимает вид . Разделив обе части уравнения на , получим каноническое уравнение эллипса

(5.2)

Установим форму эллипса исходя из его канонического уравнения.

Поскольку обе переменные входят в четной степени, кривая симметрична относительно координатных осей и начала координат. Найдем точки пересечения эллипса с координатными осями.

Пусть . Таким образом, точки и - точки пересечения с осью 0x. Положив x =0. аналогичными операциями получаем точки пересечения эллипса с осью 0y и . Найденные точки называются вершинами эллипса, а отрезки , а также их длины 2 a и 2 b, называются большой и малой осью эллипса. Числа a и b называются большой и малой полуосями. Из уравнения (5.2) следует, что каждое из слагаемых не превосходит единицы. , т.е. все точки эллипса лежат внутри прямоугольника со сторонами Из уравнения (5.2) следует,что увеличение одной переменной ведет к уменьшению другой. Таким образам эллипс имеет форму, изображенную на рис.5.1.б.

В качестве характеристики формы эллипса используется эксцентриситет эллипса.

При b=a эксцентриситет равен 0, а сам эллипс превращается в окружность. . Чем ближе значение эксцентриситета к 1, тем эллипс оказывается более сплющенным.

 

 
 
 

 


 







Дата добавления: 2015-12-04; просмотров: 208. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия