Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вероятность. Статистический ансамбль. Функция вероятности.





Вероятностью случайного события A называется отношение числа n несовместимых равновероятных элементарных событий, составляющих событие A, к числу всех возможных элементарных событий N:

Вероятность термодинамическая – число способов, которыми может быть реализовано данное состояние макроскопической физической системы. В термодинамике состояние физической системы характеризуется определёнными значениями плотности, давления, температуры и др. измеряемых величин. Перечисленные величины определяют состояние системы в целом (её макросостояние). Однако при одной и той же плотности, температуре и т.д. частицы системы могут находиться в разных местах её объёма и иметь различные значения энергии или импульса. Каждое состояние физической системы с определённым распределением её частиц по возможным классическим или квантовым состояниям называют микросостоянием.

Вероятность термодинамическая W равна числу микросостояний, реализующих данное макросостояние, из чего следует, что W ≥ 1.

Её легко вычислить лишь в случае идеальных газов. Для реальных систем вероятность термодинамическую можно оценить по величине статистической суммы. Вероятность термодинамическая связана с энтропией S системы соотношением Больцмана:

S =k•lnW.

Усреднение по микросостояниям проводят с использованием понятия статистического ансамбля. По Гиббсу, статистический ансамбль – это бесконечный набор идентичных систем, находящихся во всех возможных микросостояниях, отвечающих данному макросостоянию.

Весь ансамбль описывается некоторой функцией распределения по координатам и импульсам: r (p, q, t).

Функция распределения r (p, q, t) dpdq есть вероятность того, что система ансамбля находится в элементе объема dpdq вблизи точки с координатами (p, q) в момент времени t. Смысл функции распределения в том, что она определяет статистический вес (вклад) каждого микросостояния в макросостояние.

Существование функции распределения составляет суть основного постулата классической статистической механики: макроскопическое состояние системы полностью задается некоторой функцией распределения, которая удовлетворяет условиям нормировки и положительной определенности.

1. Нормировка: ∫∫ρ(p, q)dpdq =1

2. Положительная определенность: ρ(p, q, t) ≥ 0

Многие макроскопические свойства системы можно определить как среднее значение функции координат и импульса: f (p, q) по ансамблю:

(f) = ∫∫f(p, q)• ρ(p, q, t) dpdq.

Для равновесных систем и равновесных ансамблей функция распределения не зависит явно от времени и можно записать ρ(p, q, t). Явный вид функции распределения зависит от типа ансамбля. В соответствии с определенными ограничениями, налагаемыми на термодинамическую систему, применяют различные ансамбли, наиболее важные следующие три:

1) микроскопический ансамбль Гиббса. Описывает изолированные системы и характеризуется переменными { U, V, N }. В изолированной системе все микросостояния равновероятны (постулат равной априорной вероятности):

2) канонический ансамбль. Описывает закрытые изотермические системы, находящиеся в тепловом равновесии с окружающей средой и для этих ансамблей {T,V, N } = const

Тепловое равновесие характеризуется температурой Т, поэтому функция распределения зависит от Т:

где k = 1,38·10-23 – постоянная Больцмана, коэффициент пропорциональности const определяется условиями нормировки.

3) большой канонический ансамбль. Описывает открытые системы, способные обмениваться с окружающей средой теплотой и веществом. Тепловое равновесие характеризуется Т, а равновесие по числу частиц химическим потенциалом µ, поэтому функция распределения зависит от {T, µ, V}.

С помощью этих трех ансамблей задаются сразу все микросостояния рассматриваемых термодинамических объектов. Все три типа ансамблей эквивалентны друг другу, поэтому выбор ансамбля для описания термодинамической системы связан только с удобством математической обработки функции распределения; наиболее удобен канонический ансамбль.

 







Дата добавления: 2015-12-04; просмотров: 283. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия