Энергетика и продуктивность экосистем
Энергию определяют как способность производить работу. Свойства энергии описываются следующими законами. Первый закон термодинамики, или закон сохранения энергии, гласит, что энергия может переходить из одной формы в другую, но она не исчезает и не создается заново. Свет, например, есть одна из форм энергии, так как его можно превратить в работу, тепло или потенциальную энергию пищи в зависимости от ситуации, но энергия при этом не пропадает. Второй закон термодинамики, или закон энтропии, формулируется по-разному, в частности таким образом: процессы, связанные с превращениями энергии, могут происходить самопроизвольно только при условии, что энергия переходит из концентрированной формы в рассеянную (деградирует). К примеру, тепло горячего предмета самопроизвольно стремится рассеяться в более холодной среде. Важнейшая термодинамическая характеристика организмов, экосистем и биосферы в целом — способность создавать и поддерживать высокую степень внутренней упорядоченности, т. е. состояние с низкой энтропией. Энтропия (от греч. entropia — поворот, превращение) — мера количества связанной энергии, которая становится недоступной для использования. Низкая энтропия достигается постоянным и эффективным рассеянием легко используемой энергии (например, энергии света или пищи) и превращением ее в энергию, используемую с трудом (например, в тепловую). Упорядоченность экосистемы, т.е. сложная структура биомассы, поддерживается за счет дыхания всего сообщества, которое постоянно «откачивает из сообщества неупорядоченность». Таким образом, экосистемы и организмы представляют собой открытые неравновесные термодинамические системы, постоянно обменивающиеся с окружающей средой энергией и веществом, уменьшая этим энтропию внутри себя, но увеличивая энтропию вовне в согласии с законами термодинамики. Рассмотрим превращение энергии Солнца в энергию пищи путем фотосинтеза на примере дубового листа, который подтверждает действие этих 2-х законов. Попадая на дубовый лист большая часть энергии (98 ед) рассеивается в виде тепла, а другая его часть (2 ед) преобразуется в концентрированную энергию и передается по пищевой цепи. Т.е. лишь очень небольшая часть световой энергии, поглощенной зелеными растениями, превращается в потенциальную энергии пищи, большая ее часть превращается в тепло, покидающее затем и растение, и экосистему, и биосферу. Все разнообразие проявлений жизни сопровождается превращениями энергии, хотя энергия при этом не создается и не уничтожается (первый закон термодинамики). Энергия, получаемая в виде света поверхностью Земли, уравновешивается энергией, излучаемой с поверхности Земли в форме невидимого теплового излучения. Сущность жизни состоит в непрерывной последовательности таких изменений, как рост, самовоспроизведение и синтез сложных химических соединений. Без переноса энергии, сопровождающего все эти изменения, не было бы ни жизни, ни экологических систем. Общий поток энергии, характеризующий экосистему, состоит из солнечного излучения и длинноволнового теплового излучения, получаемого от близлежащих тел. Оба вида излучения определяют климатические условия среды (температуру, скорость испарения воды, движения воздуха и т. д.), но в фотосинтезе, обеспечивающем энергией живые компоненты экосистемы, используется лишь малая часть энергии солнечного излучения. За счет этой энергии создается основная, или первичная, продукция экосистемы. Одно из важнейших свойств организмов, их популяций и экосистем в целом - способность создавать органическое вещество, которое называют продукцией. Образование продукции в единицу времени (час, сутки, год) на единице площади (метры квадратные, гектар) или объема (в водных экосистемах) характеризует продуктивность экосистем. Т.е. реально продуктивность это скорость образования биомассы. Под ней понимают всю живую органическую массу, которая содержится в экосистеме или ее элементах вне зависимости от того, за какой период она образовалась и накопилась. Биомасса и продукция (продуктивность) обычно выражаются через абсолютно сухой вес. Продуктивность можно выразить в т/га в год, в количестве ккал/га в год; кДж/га в год, по количеству употреблений углекислоты. Т.е. продуктивность лесов можно определить по балансу кислород/углекислый газ (О2/СО2). Продукция и продуктивность могут определяться для экосистем в целом или для отдельных групп организмов Растений, животных, микроорганизмов) или видов. В процессе производства органического вещества следует выделить четыре последовательных уровня или ступени продуктивности. Валовая первичная продуктивность — это скорость накопления в процессе фотосинтеза органического вещества, включая ту его часть, которая за время измерений будет израсходована на дыхание. Ее обозначают Ре и выражают в единицах массы или энергии, приходящихся на единицу площади или объема в единицу времени. Чистая первичная продуктивность — скорость накопления органического вещества в растительных тканях за вычетом той его части, которая использовалась на дыхание (R) растений в течение изучаемого периода: PN = Pg-R. Вторичная продуктивность — скорость накопления органического вещества на уровне консументов. Она обозначается через Р2, Р3 и т. д. в зависимости от трофического уровня. Чистая продуктивность сообщества — скорость накопления органического вещества, не потребленного гетеротрофами, т. е. чистая первичная продукция за вычетом той ее части, которая в течение изучаемого периода (обычно за вегетационный период или за год) была потреблена гетеротрофами: PN—(P2 + Р3 + Р4+...). Основная масса первичной продукции образуется в экосистемах суши прибл. 115 млрд. тонн в год, и около 55 млрд. т/год – в экосистемах океана. Например продуктивность лесов тайги в среднем около 700-800 г/м3, а влажных тропических лесов – 2000-2200 г/м3. Вся пища человека составляет 1 % от чистой продуктивности или 0,5 % в валовой первичной продуктивности (сюда включена и продуктивность с/х угодий).
|