Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Cредняя квадратическая погрешность (СКП). Формулы Гаусса и Бесселя. Предельная абсолютная и относительная погрешности





Наилучшим критерием оценки точности измерений принято считать среднюю квадратическую погрешность (СКП) измерения, определяемую по формуле Гаусса:

где Di= l i-X (Х - истинное значение измеряемой величины, а l i - результат измерения).

Так как, в большинстве случаях истинное значение неизвестно, то СКП определяют по формуле Бесселя:

где Ji= l i-х (х - средняя арифметическое значение или вероятнейшее значение измеряемой величины, а l i - результат измерения).

СКП арифметической середины:

Эта формула показывает, что СКП арифметической середины в Ön раз меньше СКП отдельного измерения.

На практике различают предельные и относительные погрешности. Теорией доказывается, а практикой подтверждается, что абсолютное большинство случайных погрешностей находится в интервале от 0 до m - 68%, от 0 до 2m - 95%, от 0 до 3m - 99.7%.

На практике за предельную погрешность принимают 2m, т.е. с вероятностью 95% можно утверждать, что случайные погрешности не превысят величины равной 2m. Если n<10 то Ji(пред)=tB . M, где tB - коэффициент Стьюдента (таблица)

- оценка точности отдельного измерения

- оценка точности арифметической середины (вероятнейшего значения)

- определение окончательного результата L = x ± tBM

 


 







Дата добавления: 2015-06-15; просмотров: 391. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия