Ответ: 77,38 ≤ m ≤ 80,58
Задача 6. Задана матрица вероятностей перехода для цепи Маркова за один шаг. Найти матрицу перехода данной цепи за два шага .
Задана матрица вероятностей перехода для цепи Маркова за один шаг. Найти матрицу перехода данной цепи за три шага . Решение. Матрицей перехода системы называют матрицу, которая содержит все переходные вероятности этой системы: В каждой строке матрицы помещены вероятности событий (перехода из состояния i в состояние j), которые образуют полную группу, поэтому сумма вероятностей этих событий равна единице: Обозначим через вероятность того, что в результате n шагов (испытаний) система перейдет из состояния i в состояние j. Например - вероятность перехода из второго состояния в пятое за десять шагов. Отметим, что при n=1 получаем переходные вероятности . Перед нами поставлена задача: зная переходные вероятности , найти вероятности перехода системы из состояния i в состояние j за n шагов. Для этого введем промежуточное (между i и j) состояние r. Другими словами, будем считать, что из первоначального состояния i за m шагов система перейдет в промежуточное состояние r с вероятностью , после чего, за оставшиеся n-m шагов из промежуточного состояния r она перейдет в конечное состояние j с вероятностью . По формуле полной вероятности получаем: . Эту формулу называют равенством Маркова. С помощью этой формулы можно найти все вероятности , а, следовательно, и саму матрицу . Так как матричное исчисление ведет к цели быстрее, запишем вытекающее из полученной формулы матричное соотношение в общем виде . Вычислим матрицу перехода цепи Маркова за три шага, используя полученную формулу: Ответ: . Задача 7. MX=2. Используя свойства математического ожидания, найдите M(2X+5).
|