Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Способ воздействия низкоинтенсивным электромагнитным излучением, преобразованным биоструктурами





В качестве источника электромагнитного излучения был использован гелий-неоновый лазер мощностью 2 мВт и длиной волны 632.8 нм, который имеет две одночастотные, совмещенные, ортогональные линейно поляризованные моды излучения [Г.Г. Тертышный, 1999]. Генерацию электромагнитного излучения проводили по схеме интерферометра Фабри-Перо, в которой рабочий лазерный луч многократно проходит через тонкие слои: покровное стекло, слой клеток свежепрепарированных тканей поджелудочной железы или селезенки здорового новорожденного крысенка линии Wistar (Р2-4), предметное стекло. Перед проведением эксперимента изъятые органы (поджелудочная железа, селезенка) в объеме 3 мм3 наносили на предметное стекло, накрывали покровным стеклом и помещали на оптической оси лазерного луча. Юстировку стекол с препаратами проводили таким образом, чтобы обеспечить частичное обратное отражение луча, модулированного препаратами, в резонатор лазера. Такой многопроходный режим позволяет препарату выступать в роли оптического коррелятора [Мазур, Грачев, 1985] и влиять на распределение вторичных мод излучения лазера. Оптические сигналы регистрировались и подавались на электронную схему, которая управляет режимом генерации лазера, при этом происходит частотная стабилизация когерентного излучения. В таком режиме работы импульсный блок питания лазера, играющий роль передатчика электромагнитного излучения, генерирует преобразованное зондируемыми препаратами электромагнитное излучение. Расстояние от зондируемого препарата до активного элемента лазера 11см.

На рисунке 1 представлены зарегистрированные сигналы электромагнитного излучения He-Ne лазера в состоянии резонанса.

а б

Рис.1. Сигнал с блока питания лазера в резонансном режиме без биообъекта (а) и спектр частотно-амплитудных и фазовых составляющих электромагнитного излучения сканируемой ткани поджелудочной железы (б).

Для исключения побочного влияния внешних факторов воздействия для каждой опытной группы параллельно формировались контрольная и плацебо группы. В контрольных группах (табл.1) воздействие электромагнитным излучением не проводилось. Животных 1-ой опытной группы (табл.1) подвергали корригирующему воздействию электромагнитным излучением, преобразованным тканями поджелудочной железы и селезенки новорожденной крысы (Р2-4) (пЭМИ) с 3-х суток с момента введения аллоксана. На животных 2-ой опытной группы (табл.1) осуществляли превентивное воздействие пЭМИ, за сутки до моделирования аллоксанового сахарного диабета. Животных 1-ой плацебо группы (табл.1) подвергали воздействию электромагнитным излучением, не преобразованным биоструктурами, начиная с 3-х суток с момента введения аллоксана. Животных 2-ой плацебо группы (табл.1) подвергали воздействию электромагнитным излучением, также не преобразованным биоструктурами, а аллоксановый сахарный диабет моделировали спустя сутки после последнего воздействия. Животных опытных и плацебо групп располагали на расстоянии 70 см от источника электромагнитного излучения. Воздействие пЭМИ на 1 и 2-ю опытные группы проводили ежедневно по 30 минут в течение 4-х дней по схеме: 10 минутное воздействие пЭМИ, полученным в результате прохождения лазерного луча через препарат с тканью поджелудочной железы; 10 минутное воздействие пЭМИ, полученным в результате прохождения лазерного луча через препарат с тканью селезёнки; 10 минутное воздействие пЭМИ, полученным в результате прохождения лазерного луча через препарат с тканью поджелудочной железы. Воздействие не преобразованным биоструктурами электромагнитным излучением на животных 1-ой и 2-ой плацебо групп осуществляли в течение 4-х дней по 30 минут ежедневно. При этом лазерный луч проходил через предметное и покровное стекла, не содержащих биоструктуры.

В группе интактных животных экспериментальный сахарный диабет не моделировали и воздействие электромагнитным излучением не проводили.

 







Дата добавления: 2015-06-15; просмотров: 371. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия