Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнение адсорбции Генри





Уравнение количественно описывающие процесс адсорбции называют именами их авторов.

При выводе этого уравнения поверхностный слой будем рассматривать, как отдельную фазу. Перераспределение вещества между поверхностным слоем и объемом фазы будет происходить до тех пор, пока химические потенциалы в поверхностном слое и объеме фазы не выравняются, т.е. μ=μs (1)

Где μs – химический потенциал вещества в поверхностном слое;

μ- химический потенциал для объемной фазы.

Если μ μs, то адсорбция положительная,

если μ μs, то адсорбция отрицательная.(вещество уходит с поверхности.)

Учитывая, что μ= μ0+ RT∙ln a, (2)

μs= + RT∙ln as, (3)

где а- активность адсорбата в объемной фазе;

as- активность адсорбата на поверхности.

Подставляя (2) и (3) в (1), получаем:

μ 0 + RT∙ln a = + RT∙ln as, (4)

Преобразуя, имеем:

= const= Kг (5)

Константа Kг- называется константой распределения Генри. Она не зависит от концентрации, а зависит только от температуры- Kг= f(Т).

Если в области малых концентраций активность можно считать равной концентрации (а = с, аs= сs), то поверхностная концентрация Сs =А.

Из уравнения (5) будем иметь:

= Кг или А= Кг ∙С (6)

Учитывая то, что P=C∙R∙T; C= ,

Можно получить выражение адсорбции через давление:

А= или А= Кг∙P (7)

Уравнение (6) и (7) выражают Закон Генри для адсорбции:

величина адсорбции при малых давлениях газа (концентрации раствора) пропорциональна давлению (концентрации).

Данное уравнение простое, но иногда его вполне достаточно для практических расчетов. На твердых поверхностях область действия закона мала из-за неоднородности поверхности.

Но даже на однородной поверхности обнаруживается отклонение от линейной зависимости при увеличении Р или С. Это объясняется уменьшением доли свободной поверхности, приводящим к замедлению роста адсорбции.

А

 

 

 

 


Р(С)

Отклонение от закона Генри учитывает эмпирическое уравнение адсорбции, установленное Фрейндлихом.

Уравнение имеет вид:

для адсорбции газов: А= = К∙Р1/n (1)

для адсорбции из растворов: А= = К∙ c 1/n (2)

где х- количество адсорбированного вещества;

m- масса адсорбента;

Р,С- равновесные давление или концентрация;

К, К’,1/n- константы, причем n 1, т.е. 1/n 1.

Для газов 1/n= 0,2- 0,9, для растворов: 1/n=0,2- 0,5.

Величина n характеризует степень отклонения изотермы от линейности.

Рассмотрим, какие участки изотермы адсорбции описывает уравнение Фрейндлиха.

 

А

I II III

 

Д Е

 

B

А

 

 


Р(С)

О

 

 

На участке ОВ адсорбция прямопропорциональна концентрации, для него постоянная 1/n должна быть равна единице.

На участке ДЕ- наблюдается независимость адсорбции от концентрации.

Чтобы уравнение (1) описывало этот участок, необходимо, чтобы 1/n=0, но в уравнении Фрейндлиха 1/n- дробная величина. Следовательно, это уравнение справедливо только для переходной части изотермы на участке ВД, т.е. для области средних концентраций, где 0 1/n 1.

Таким образом уравнение Фрейндлиха, описывает только переходную часть изотермы, и не определяет предельную адсорбцию А .

Начальный участок ОВ – подчиняется уравнению Генри. Уравнение Фрейндлиха используется широко на практике, но только для ориентировочных расчетов.

Схематически изотерма адсорбции имеет вид:

А

 

 

2 3

С(Р)

1 участок – круто поднимающийся вверх, почти прямолинейный, показывает, что при малых давлениях (или С) адсорбция растет линейно или пропорционально этим величинам:

А = К ∙ С или А = К ∙ Р

3 участок – горизонтальный, соответствующий большим давлениям (или С), поверхность адсорбента полностью насыщена адсорбтивом:

А = К1

2 участок – средний участок кривой соответствует промежуточным степеням заполнения поверхности:

А = К ∙С1/n, где 0 < <1 - эмперическое уравнение Фрейндлиха,

используется для аналитического выражения изотермы адсорбции







Дата добавления: 2015-03-11; просмотров: 2690. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия