Градие́нт (от лат. gradiens, род. падеж gradientis — шагающий, растущий) — вектор, своим направлением указывающий направление наискорейшего возрастания некоторой величины
, значение которой меняется от одной точки пространства к другой (скалярного поля), а по величине (модулю) равный быстроте роста этой величины в этом направлении.
Например, если взять в качестве
высоту поверхности Земли над уровнем моря, то её градиент в каждой точке поверхности будет показывать «направление самого крутого подъёма», и своей величиной характеризовать крутизну склона.
С математической точки зрения градиент — это производная скалярной функции, определенной на векторном пространстве.
Пространство, на котором определена функция и её градиент может быть вообще говоря как обычным трехмерным пространством, так и пространством любой другой разменрости любой физической природы или чисто абстрактным.
Термин впервые появился в метеорологии, а в математику был введен Максвеллом в 1873 г. Обозначение grad тоже предложил Максвелл.
Стандартные обозначения:

или, с использованием оператора набла,
— вместо
может быть любое скалярное поле, обозначенное любой буквой, например
— обозначения градиента поля V.
Для случая трёхмерного пространства градиентом скалярной функции
координат x,y,z называется векторная функция с компонентами
,
,
.
Или, использовав для единичных векторов по осям прямоугольных декартовых координат
:
Если
— функция
переменных
, то её градиентом называется
-мерный вектор

компоненты которого равны частным производным
по всем её аргументам.
· Размерность вектора градиента определяется, таким образом, размерностью пространства (или многообразия), на котором задано скалярное поле, о градиенте которого идет речь.
· Оператором градиента (обозначаемым обычно, как говорилось выше,
или
) называется оператор, действие которого на скалярную функцию (поле) дает ее градиент. Этот оператор иногда коротко называют просто "градиентом".
Смысл градиента любой скалярной функции
в том, что его скалярное произведение с бесконечно малым вектором перемещения
дает полный дифференциал этой функции при соответствующем изменении координат в пространстве, на котором определена
, то есть линейную (в случае общего положения она же главная) часть изменения
при смещении на
. Применяя одну и ту же букву для обозначения функции от вектора и соответствующей функции от его координат, можно написать:

Стоит здесь заметить, что поскольку формула полного дифференциала не зависит от вида координат
, то есть от природы параметров x вообще, то полученный дифференциал является инвариантом, то есть скаляром, при любых преобразованиях координат, а поскольку
— это вектор, то градиент, вычисленный обычным образом, оказывается ковариантным вектором, то есть вектором, представленным в дуальном базисе, какой только и может дать скаляр при простом суммировании произведений координат обычного (контравариантного), то есть вектором, записанным в обычном базисе. Таким образом, выражение (вообще говоря — для произвольных криволинейных координат) может быть вполне правильно и инвариантно записано как:

или, опуская по правилу Эйнштейна знак суммы,

(в ортонормированном базисе мы можем писать все индексы нижними, как мы и делали выше). Однако градиент оказывается настоящим ковариантным вектором в любых криволинейных координатах.
Пример
Например, градиент функции
будет представлять собой:
