Неравенства Чебышёва
Во введении к разделу обсуждалась задача проверки того, что доля дефектной продукции в партии равна определенному числу. Для демонстрации вероятностно-статистического подхода к проверке подобных утверждений являются полезными неравенства, впервые примененные в теории вероятностей великим русским математиком Пафнутием Львовичем Чебышёвым (1821-1894) и потому носящие его имя. Эти неравенства широко используются в теории математической статистики, а также непосредственно применяются в ряде практических задач принятия решении. Например, в задачах статистического анализа технологических процессов и качества продукции в случаях, когда явный вид функции распределения результатов наблюдений не известен. Они применяются также в задаче исключения резко отклоняющихся результатов наблюдений. Первое неравенство Чебышева. Пусть Х – неотрицательная случайная величина (т.е. Теорема. Если Х1, Х2, …, Хn- попарно независимые случайные величины, причем дисперсии их равномерно ограничены (не превышаю постоянного числа С), то, как бы мало не было положительное число e, вероятность неравенства будет сколь угодно близка к единице, если число случайных величин достаточно велико. Часто приходится иметь дело с такими случайными величинами, которые являются суммами большого числа независимых случайных величин. При некоторых весьма общих условиях оказывается, что эта сумма имеет распределение, близкое к нормальному, хотя каждое из слагаемых может не подчиняться нормальному закону распределения вероятностей. Эти условия были найдены Ляпуновым * и составляют содержание теоремы, названной его именем. 1) Cуществует такое число L, что для любого i имеет место неравенство 2) Cумма Тогда при достаточно большом n сумма Пусть a и 13-21 Выше рассматривались случайные события, являющиеся качественной характеристикой случайного результата опыта. Для получения количественной характеристики вводится понятие случайной величины. Определение. Случайной величиной называется величина, которая в результате опыта может принимать то или иное значение, причем заранее известно какое именно. Случайные величины можно разделить на две категории. Определение. Дискретной случайной величиной называется такая величина, которая в результате опыта может принимать определенные значения с определенной вероятностью, образующие счетное множество (множество, элементы которого могут быть занумерованы). Это множество может быть как конечным, так и бесконечным. Например, количество выстрелов до первого попадания в цель является дискретной случайной величиной, т.к. эта величина может принимать и бесконечное, хотя и счетное количество значений. Определение. Непрерывной случайной величиной называется такая величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка. Очевидно, что число возможных значений непрерывной случайной величины бесконечно. Для задания случайной величины недостаточно просто указать ее значение, необходимо также указать вероятность этого значения. Математическое ожидание – среднее значение случайной величины. Дисперсией непрерывной случайной величины Среднее квадратичное отклонение — это квадратный корень из среднего арифметического всех квадратов разностей между данными величинами и их средним арифметическим. Среднее квадратичное отклонение принято обозначать греческой буквой сигма σ. Начальным моментом порядка k случайной величины X называют математическое ожидание величины Хk: νk=M(Xk)
В частности, начальный момент первого порядка равен математическому ожиданию: M(X).
μk=M[X-M(X)]k
Центральный момент второго порядка равен дисперсии: μ2=M[X-M(X)]2=D(X)
μ2=ν2-ν12 μ3=ν3-3ν1ν2+2ν13
μ4=ν4-4ν1ν3+6ν1ν2-3ν14
Пример решения задачи. X 1 3 р 0,4 0,6
|