Найти центральные моменты первого, второго, третьего и четвертого порядков
Нормальное распределение,[1][2] также называемое распределением Гаусса — распределение вероятностей, которое в одномерном случае задается функцией плотности вероятности, совпадающей с функцией Гаусса: где параметр m — математическое ожидание (среднее значение), медиана и мода распределения, а параметр σ; — среднеквадратическое отклонение (σ; ² — дисперсия) распределения. Таким образом, одномерное нормальное распределение является двухпараметрическим семейством распределений. Многомерный случай описан в статье «Многомерное нормальное распределение». Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием μ; = 0 и стандартным отклонением σ; = 1. Для вычисления вероятности того, что нормально распределенная случайная величина X будет принимать значения в промежутке используется формула Вид функций F(x), р(х), или перечисление р(хi) называют законом распределения случайной величины. Хотя можно представить себе бесконечное разнообразие случайных величин, законов распределения гораздо меньше. Во-первых, различные случайные величины могут иметь совершенно одинаковые законы распределения. Например: пусть y принимает всего 2 значения 1 и -1 с вероятностями 0.5; величина z = -y имеет точно такой же закон распределения. Хотя в принципе возможны самые разные законы распределения, здесь будут рассмотрены несколько наиболее типичных законов. Важно обратить внимание на условия, в которых они возникают, параметры и свойства этих распределений. 1. Равномерное распределение Параметры распределения: a, b 2. Нормальное распределение (6.1) называется нормальным. (Рисунок 6.2) 3. Распределение Бернулли (6.2) Здесь n - число испытаний в серии, m - случайная величина (число появлений события А), Рn(m) - вероятность того, что А произойдет именно m раз, q = 1 - р (вероятность того, что А не появится в испытании). Пример 1: Кость бросают 5 раз, какова вероятность того, что 6 очков выпадет дважды? Параметры распределения: n, р 4. Распределение Пуассона (6.3) Параметр распределения: a Распределению Пуассона подчиняются очень многие случайные величины, встречающиеся в науке и практической жизни. Пример 2: число вызовов, поступающих на станцию скорой помощи в течение часа. Рассмотрим двумерную случайную величину (X, Y), где X и У—зависимые случайные величины. Представим одну из величин как функцию другой. Ограничимся приближенным представлением (точное приближение, вообще говоря, невозможно) величины Y в виде линейной функции величины X: где α и β — параметры, подлежащие определению. Это можно сделать различными способами: наиболее употребительный из них—метод наименьших квадратов. Функцию g(X)=αX+β называют «наилучшим приближением» Y в смысле метода наименьших квадратов, если математическое ожидание М [Y—g(X)]2 принимает наименьшее возможное значение; функцию g(x) называют среднеквадратической регрессией Y на X. Теорема. Линейная средняя квадратическая регрессия Y на X имеет вид где mx=M(X), my=M(Y), σx=√D(X), σy=√D(Y), r=µxy/(σxσy)— коэффициент корреляции величин X и Y. Доказательство. Введем в рассмотрение функцию двух независимых аргументов α и β: F(α, β) = σy2+ β2 σx2—2r σxσyβ+(my—α—βmx)2. (*) Исследуем функцию F(α, β) на экстремум, для чего приравняем нулю частные производные: Отсюда, Легко убедиться, что при этих значениях α и β рассматриваемая функция принимает наименьшее значение. Итак, линейная средняя квадратическая регрессия Y и X имеет вид: или Коэффициент β=rσy/σx называют коэффициентом регрессии Y на X, а прямую называют прямой среднеквадратической регрессии Y на X. Подставив найденные значения α и β в соотношение (*), получим минимальное значение функции F (α, β), равное σy2(1—r2). Величину σy2(1—r2) называют остаточной дисперсией случайной величины Y относительно случайной величины X; она характеризует величину ошибки, которую допускают при замене У линейной функцией g(X)=α + βX. При r = ±1 остаточная дисперсия равна нулю; другими словами, при этих крайних значениях коэффициента корреляции не возникает ошибки при представлении Y в виде линейной функции от X. (rσx/σy — коэффициент регрессии X на Y) и остаточную дисперсию σx2(1—r2) величины X относительно Y. Математическая статистика – это наука, занимающаяся методами обработки экспериментальных данных. Любая наука решает в порядке возрастания сложности и важности следующие задачи: 1) описание явления; 2) анализ и прогноз; 3) поиск оптимального решения. Такого рода задачи решает и математическая статистика: 1) систематизировать полученный статистический материал; 2) на основании полученных экспериментальных данных оценить интересующие нас числовые характеристики наблюдаемой случайной величины; 3) определить число опытов, достаточное для получения достоверных результатов при минимальных ошибках измерения. Одной из задач третьего типа является задача проверки правдоподобия гипотез. Она может быть сформулирована следующим образом: имеется совокупность опытных данных, относящихся к одной или нескольким случайным величинам. Необходимо определить, противоречат ли эти данные той или иной гипотезе, например, гипотезе о том, что исследуемая случайная величина распределена по определенному закону, или две случайные величины некоррелированы (т.е. не связаны между собой) и т.д. В результате проверки правдоподобия гипотезы она либо отбрасывается, как противоречащая опытным данным, либо принимается, как приемлемая. Таким образом, математическая статистика помогает экспериментатору лучше разобраться в полученных опытных данных, оценить, значимы или нет определенные наблюденные факты, принять или отбросить те или иные гипотезы о природе рассматриваемого явления. Основной целью математической статистики является установление закономерностей, которым подчиняются массовые случайные явления. Для этого решаются следующие основные задачи: определение способов сбора и обработки информации — результатов наблюдений. Пусть требуется определить наличие какого-либо признака, характеризующего объект, в большой совокупности однородных объектов. Например, это может быть дефект детали в большой партии одинаковых деталей. Для этого можно провести сплошное исследование всей партии деталей (совокупности). Однако часто такой подход оказывается невозможным по ряду причин. Во-первых, совокупность однородных объектов может быть очень большой, и тогда, анализ всей совокупности оказывается очень трудоемким. Во-вторых, исследование может быть очень дорогим или быть связано с разрушением объекта, и тогда, сплошное исследование становится бессмысленным. В таких случаях поступают по-другому: из всей совокупности отбирают некоторое число объектов и исследуют только их. Это число должно быть мало по сравнению со всей совокупностью, но достаточно велико, чтобы в этой отобранной группе уже начали проявляться статистические закономерности. Введем основные понятия, использующиеся в математической статистике. Определение. Выборочной совокупностью (или выборкой) называют совокупность случайно отобранных объектов. Определение. Генеральной совокупностью называют совокупность всех объектов, из которых производится выборка. Определение. Объемом совокупности называют число объектов в этой совокупности.
Пример. Из 10000 деталей случайным образом выбирают 100 для исследования. Объем выборки — 100 деталей, объем генеральной совокупности — 10000 деталей. Выборку можно осуществлять различными способами. Если отобранный предмет после исследования возвращается в генеральную совокупность и снова может участвовать в отборе, то такую выборку называют повторной . Разумеется, такой способ возможен, когда объект не разрушается в результате исследования. Если отобранный предмет после исследования не возвращается в генеральную совокупность, то такую выборку называют бесповторной . По смыслу выборки она должна быть мала по сравнению с генеральной совокупностью, поскольку иначе можно было бы проводить сплошное исследование. Именно такой случай малых выборок мы и будем в дальнейшем иметь в виду. Тогда, при возвращении объекта в генеральную совокупность после исследования, вероятность отобрать его снова мала и, фактически, нет разницы между повторной и бесповторной выборками. Поэтому в дальнейшем мы не будем конкретизировать способ выборки, а будем пользоваться более удобным способом в вычислениях. В определении выборки указывалось, что это совокупность случайно отобранных объектов. Задача случайного отбора не всегда является тривиальной и, в ряде случаев, требует специальных построений для того, чтобы отбор был действительно случайным. Кроме того, объем выборки должен быть достаточно большим, что бы начали проявляться закономерности обусловленные законом больших чисел. Такую выборку часто называют репрезентативной (представительной) выборкой .Чтобы обеспечить репрезентативность выборки, выделяют несколько способов отбора объектов.
Применяют также и различные комбинации упомянутых выше способов отбора. Пусть из генеральной совокупности извлечена выборка из n объектов. Пусть значение некоторого признака объекта x1 наблюдалось n1 раз, x2наблюдалось n2 раз и так далее. Разумеется, . Значения xi называются вариантами , а значения ni — частотами . Варианты, записанные в возрастающем порядке, называют вариационным рядом . Отношения называют относительными частотами , при этом .Определение. Статистическим распределением выборки называют совокупность вариантов и соответствующих им частот (или относительных частот).Определение. Эмпирической функцией распределения (или функцией распределения выборки) называют функцию , где nx — число вариант со значением меньше x. Определение. Теоретической функцией распределения называют функцию распределения генеральной совокупности. Следует отметить, что относительная частота обладает всеми свойствами вероятности, статистическое распределение обладает всеми свойствами закона распределения, а эмпирическая функция распределения обладает всеми свойствами функции распределения случайной величины. В силу закона больших чисел, при больших n относительная частота, статистическое распределение и эмпирическая функция распределения будут близки к вероятности, закону распределения и функции распределения соответственно. Несложно обобщить данные понятия и на случай когда варианты принимают не дискретные, а непрерывные значения, нужно только под каждым xi понимать некоторый интервал значений. Обычно полученные наблюдаемые данные представляют собой множество расположенных в беспорядке чисел. Просматривая это множество чисел, трудно выявить какую-либо закономерность их варьирования (изменения). Для изучения закономерностей варьирования значений случайной величины опытные данные подвергают обработке. Пример 1. Проводились наблюдения над числом Х оценок полученных студентами ВУЗа на экзаменах. Наблюдения в течение часа дали следующие результаты: 3; 4; 3; 5; 4; 2; 2; 4; 4; 3; 5; 2; 4; 5; 4; 3; 4; 3; 3; 4; 4; 2; 2; 5; 5; 4; 5; 2; 3; 4; 4; 3; 4; 5; 2; 5; 5; 4; 3; 3; 4; 2; 4; 4; 5; 4; 3; 5; 3; 5; 4; 4; 5; 4; 4; 5; 4; 5; 5; 5. Здесь число Х является дискретной случайной величиной, а полученные о ней сведения представляют собой статистические (наблюдаемые) данные. Расположив приведенные выше данные в порядке неубывания и сгруппировав их так, что в каждой отдельной группе значения случайной величины будут одинаковы, получают ранжированный ряд данных наблюдения. В примере 1 имеем четыре группы со следующими значениями случайной величины: 2; 3; 4; 5. Значение случайной величины, соответствующее отдельной группе сгруппированного ряда наблюдаемых данных, называют вариантом, а изменение этого значения варьированием. Варианты обозначают малыми буквами латинского алфавита с соответствующими порядковому номеру группы индексами - xi. Число, которое показывает, сколько раз встречается соответствующий вариант в ряде наблюдений называют частотой варианта и обозначают соответственно - ni. Сумма всех частот ряда - объем выборки. Отношение частоты варианта к объему выборки ni / n = wi называют относительной частотой. Статистическим распределением выборки называют перечень вариантов и соответствующих им частот или относительных частот (табл. 1, табл. 2). Пример 2. Задано распределение частот выборки объема n = 20: Таблица 1
Написать распределение относительных частот. Решение. Найдем относительные частоты, для чего разделим частоты на объем выборки: W1 = 3/20 = 0,15; W2 = 10/20 = 0,50; W3 = 7/20 = 0,35. Напишем распределение относительных частот: Таблица 2
Контроль: 0,15 + 0,50 + 0, 35 = 1. Статистическое распределение можно задать также в виде последовательности интервалов и соответствующих им частот (в качестве частоты, соответствующей интервалу, принимают сумму частот, попавших в этот интервал). Дискретным вариационным рядом распределения называют ранжированную совокупность вариантов xi с соответствующими им частотами ni или относительными частотами wi. Для рассмотренного выше примера 1 дискретный вариационный ряд имеет вид: Таблица 3
Непрерывный вариационный ряд - ряд, построенный на основе количественного статистического признака. Пример. Средняя продолжительность заболеваний осужденных (дней на одного человека) в осенне-зимний период в текущем год составила:
Результаты группировки оформим в виде таблицы:
25-27, 29
|