Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Технология обучения математике на основе решения задач (Р.Г. Хазанкин)





 

Чтобы научить решать задачи,

 

надо их решать

 

ДЛойа

 

Хазанкин Роман Григорьевич - учитель школы № 14 г. Белореика Республики Башкортостан, заслуженный учитель РСФСР, лауреат премии им.Н. К. Крупской

 

Классификационные параметры

 

По уровню применения: частнопредметная.

 

По философской основе: диалектическая + сциентистская.

 

По основному фактору развития: социогенная.

 

По концепции усвоения: ассоциативно-рефлекторная.

 

По ориентации на личностные структуры: ЗУН + СУД.

 

По характеру содержания: обучающая, светская, общеобразовательная, технократическая, политехнология.

 

По типу управления: современное традиционное обучение + «репетитор».

 

По организационным формам: классно-урочная + индивидуальная, академическая + клубная, дифференцированная.

 

По подходу к ребенку: технология сотрудничества.

 

По преобладающему методу: объяснительно-иллюстративная + проблемная.

 

По направлению модернизации: методическое усовершенствование.

 

По категории обучаемых: массовая + работа с трудными - работа с одаренными.

 

Целевые ориентации

 

• Обучение всех на уровне стандарта.

 

• Увлечение детей математикой.

 

• Выращивание талантливых.

 

Концептуальные положения

 

• Личностный подход, педагогика успеха, педагогика сотрудничества.

 

• Обучать математике = обучать решению задач.

 

• Обучать решению задач = обучать умениям типизации + умение решать типовые задачи.

 

• Индивидуализировать обучение «трудных» и «одаренных».

 

• Органическая связь индивидуальной и коллективной деятельности.

 

• Управлять общением старших и младших школьников.

 

• Сочетать урочную и внеурочную формы работы.

Особенности методики

 

В системе форм учебных занятий особое значение имеют нетрадиционно построенные: урок-лекция, уроки решения «ключевых задач», уроки-консультации, зачетные уроки.

 

1) Уроки-лекции раскрывают новую тему крупным блоком и экономят время для дальнейшей творческой работы. Их структурные элементы:

 

- обоснование необходимости изучения темы;

 

- проблемные ситуации, анализ этих ситуаций;

 

- работа с утверждениями по определенной схеме;

 

- обсуждение круга вопросов, которые близки к теме лекции и предлагаются для самостоятельной работы;

 

- сообщение материала, выносимого на зачет, список литературы, дата проведения зачета;

 

- разбор решения ключевых задач по теме.

 

2) Уроки-решения «ключевых задач». Учитель вместе с учащимися вычленяет минимальное число основных задач по теме, учит распознавать и решать их.

 

Виды работы с задачами:

 

- решение задачи различными методами;

 

- решение системы задач;

 

- проверка решения задач товарищами;

 

- самостоятельное составление задач: аналогичных, обратных, обобщенных, на применение;

 

- участие в конкурсах и олимпиадах.

 

После разбора ключевых задач учитель организует работу так, чтобы все в классе получили достаточную тренировку в их распознавании, решении, а затем и в составлении. Ребятам рекомендуется иметь схемы решения: ими можно пользоваться и на уроках, и на контрольных. Подбор ключевых задач позволяет уменьшить перегрузку старшеклассников: им приходится решать их меньше и в классе, и дома.

 

Знание только алгоритмов решения ключевых задач не может удовлетворить тех, кто проявляет особый интерес к математике. С ними нужно вовремя перейти к разбору задач нестандартных, например из журнала «Квант».

 

3) Уроки-консультации, когда вопросы задают ученики по заранее заготовленным карточкам.

 

Работа с карточками на консультации состоит в том, что:

- задачи компонуются в группы по содержанию, методам решения, сложности;

 

- вычленяется задача (из числа предложенных) или формулируется новая, решение которой является ключом к методике решения задач всей группы;

 

- формулируется и решается одна задача, которая обеспечит знакомство школьников с решением нескольких задач из разных карточек;

 

- подбираются ключевые задачи к задачам из карточек;

 

- определяются источники, в которых содержатся решения отдельных задач, включенных школьниками в карточки;

 

- включается дополнительная, важная для всех (по мнению учителя) задача.

 

4) Зачетные уроки, цель которых - организовать индивидуальную работу, помощь старших ребят младшим, постепенно подойти к решению более сложных задач.

 

Зачетные уроки - это уроки индивидуальной работы, которые служат как для контроля и оценки знаний, так и для целей обучения, воспитания и развития. В процессе зачетов организуется вертикальная педагогика: у каждого ученика имеется научный руководитель из класса на ступеньку выше и подшефный ученик из класса на ступеньку ниже. Старшие принимают зачеты у младших товарищей. Эта форма проверки знаний дает огромные преимущества перед традиционными -опросом у доски и контрольными работами: снимает с учителя заботу о накоплении оценок; на уроках происходит творческое общение; проблемы обсуждаются

 

свободно, можно высказывать любые мысли - плохой оценки или выговора не бывает.

 

После повторения темы (предыдущего класса) старшие получают задание: подготовить карточку для приема зачета у ученика младшего класса. В карточку включаются вопросы теории, ключевые задачи и задания, учитывающие индивидуальные особенности сдающего (проблемы, интересы, способности).

 

Зачет проводится по каждой теме, обычно раз в неделю. Огромную пользу получает и принимающий зачет: происходит переосмысление материала, систематизация, сопоставление нового и старого - и тем самым развивается мышление «экзаменатора».

Алгоритм зачета:

 

- школьник выполняет индивидуальное задание с карточки;

 

- устный отчет старшекласснику (работа а паре);

 

- старшеклассник разъясняет, если обнаружил непонимание сути или пробелы в знаниях;

 

- беседа в паре до полного понимания:

 

- я зачетную карточку принимающий выставляет три оценки: за ответ по теории, за решение задачи с карточки, за ведение тетради;

 

- принимающий обозначает с помощью условных значков качество решения каждой задачи;

 

- мотивация оценок

 

Сам Р.Г.Хазанкпн подытоживает основные направления своей системы в 10 заповедях:

 

1. Стараться, чтобы теоретические знания ребят были как можно более глубокими. Школьники должны хорошо понимать глубинные взаимосвязи изучаемого предмета, знать и уметь пользоваться общими методами данной науки.

 

2. Связывать изучение математики с другими учебными предметами.

 

3. Систематически изучать, как использовать теоретические знания, решая за дачи; методы доказательства и общие методы решения задач.

 

4. Руководящие идеи, общие приемы накапливать, систематизировать, исследовать в различных ситуациях.

 

5. Учить догадываться.

 

6. Продолжать работать с решенной задачей.

 

7. Учиться видеть красоту математики - процесс решения и результаты.

 

8. Составлять задачи самостоятельно.

 

9. Работать с учебной, научно-популярной и научной литературой.

 

10. Организовать «математическое» общение на уроке и после уроков. Внеклассные формы работы по предмету - неотъемлемая часть технологии

 

Р.Г.Х.мамкина. Кроме индивидуальной формы используются следующие: математические бон; математические олимпиады; КВН; математические вечера: летняя математическая школа; работа научного общества учащихся (НОУ).

Школьники - члены НОУ активно помогают учителю в организации учебно-воспитательного процесса (разработка дидактических материалов, проверка тетрадей, оказание помощи учащимся, проведение олимпиад).

 

Литература

 

1. Зильбергер Н.И. и др. Формы работы Р. Г. Хазанкина // Математика в школе. -1986. - №2.

 

2. Зильбергер Н.И. Методические указания по составлению математических задач. - Псков.

 

1991.

 

3. Зилъбергер Н.И. Урок математики. Подготовка и проведение. - М.: Просвещение, 1995.

 

4. Преловская М. Извлечение корня, или Откуда в Белореаке столько вундеркиндов Возвышение желаний, или Как осуществить себя. - М.: Политиздат. 1986.

 

5. Селевко Г.К. Физический вечер в школе // Вопросы оптики в факультативных курсах. -Ярославль, 1970.

 

6. Хазанкин Р.Г. Десять заповедей учителя математики // Народное образование. - 1991.-№1.

 

7. Хазанкин Р.Г. Как увлечь учеников математикой // Народное образование. - 1987.-№10.

 

8. Халамайзер А.В. Из опыта работы Хазанкина Р.Г. // Математика в школе. - 1987. - № 4.

 







Дата добавления: 2015-06-15; просмотров: 707. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия