Прогнозирование в рядах динамики
Полученные при анализе динамических рядов характеристики используются для получения статистических прогнозов, под которыми понимаются статистические оценки состояния явления в будущих периодах. Статистическое прогнозирование основано на предположении, что закономерность развития, основная тенденция, действующая в прошлом (внутри ряда динамики), сохранится и в будущем. Такое предположение называется экстраполяцией. Теоретической основой распространения тенденции на будущее является инерционность социально-экономических явлений. Следует иметь в виду, что экстраполяция в рядах динамики носит приближенный характер. Точность прогноза зависит от сроков прогнозирования: чем они короче, тем надежнее результат экстраполяции, так как за короткий период времени не успевают значительно измениться условия развития явления и характер его динамики. Обычно рекомендуется, чтобы срок прогноза не превышал 1/3 длительности базы расчета тренда. С помощью метода экстраполяции получают два вида прогноза: точечные и интервальные. Точечный прогноз представляет собой конкретное численное значение уровня в прогнозируемый период (момент) времени. Интервальный прогноз – диапазон численных значений, предположительно содержащий прогнозируемое значение уровня. В зависимости от того, какие принципы и исходные данные положены в основу прогноза, выделяют следующие методы экстраполяции (прогнозирования): • на основе среднего абсолютного прироста , • на основе среднего коэффициента роста , • на основе аналитического выравнивания ряда. Метод прогнозирования на основе среднего абсолютного прироста применяется в том случае, если уровни изменяются равномерно (линейно). Прогнозируемое значение уровня определяется по формуле: , (7.13) где - экстраполируемый уровень; - конечный уровень ряда динамики; l – период упреждения прогноза (срок экстраполяции). Прогнозирование по среднему коэффициенту роста применяется, если общая тенденция характеризуется экспотенциальной кривой. В этом случае экстраполируемый уровень определяется по формуле: (7.14) Прогнозирование на основе аналитического выравнивания является наиболее распространенным методом прогнозирования. Для получения прогноза используется аналитическое выражение тренда. Чтобы получить прогноз, достаточно в модели продолжить значение условного показателя времени tiдо tn+i. Интервальные прогнозы имеют значительные преимущества перед точечными – они учитывают вероятность свершения прогноза. Величина доверительного интервала определяется в общем виде так: , (7.15) где - коэффициент доверия по распределению Стьюдента; - средняя квадратическая ошибка тренда, рассчитываемая по формуле: (7.16) n – число уровней исходного ряда, m – число параметров трендового уравнения. Коэффициент доверия выбирается по таблице распределения Стьюдента. Таким образом, при использовании интервального прогноза:
|