Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Причины образования токсичных компонентов в отработавших газах карбюраторных и дизельных ДВС





В последнее время уменьшение загрязнения воздуха токсичными веществами, которые выделяются промышленными предприятиями и автомототранспортом, является одной из серьезнейших задач всех промышленно и экономически развитых стран. Загрязненный воздух оказывает вредное влияние на человека, растения, животных, здания и другие сооружения. Материальный ущерб, наносимый загрязнением атмосферы, трудно оценить, так как для этого необходимы многочисленные сведения из различных отраслей народного хозяйства страны.

Значение автомобильных двигателей внутреннего сгорания в загрязнении атмосферного воздуха отдельных стран или районов довольно велика.

В крупных городах автомобильные двигатели являются одним из основных причин загрязнения воздушного бассейна. Решающую роль в загрязнении воздуха в настоящее время играют бензиновые двигатели внутреннего сгорания. Тем не менее, уменьшение токсичности транспортных дизелей также заслуживает серьезного внимания. При концентрации дизельного транспорта или оборудования в ограниченных пространствах (карьерах, рудниках, шахтах и т. д.) дизели могут стать основной причиной загрязнения воздушного бассейна токсичными веществами.

Токсичные вещества при использовании подвижных транспортных средств попадают в атмосферу с выхлопными газами, испарениями из топливных систем и при заправке, а так же с картерными газами.

Таким образом, разобравшись в причине образования отработавших газов, человечество может повлиять в лучшую сторону на решение экологических проблем автомобильного транспорта.

 


Таблица 1 Содержание веществ в отработавших газах двигателей внутреннего сгорания, % по объему

Компонент Бензиновый двигатель Дизель
Азот 74...77 74...78
Кислород 0,3...10,0 2...18
Водяной пар 3,0...5,5 0,5...9,0
Углекислый газ (диоксид углерода) 5...12 1...12
Оксид углерода (угарный газ) 0,5...12,0 0,005...0,4
Оксиды азота 0,01...0,80 0,004...0,5
Углеводороды 0,2...3,0 0,009...0,3
Альдегиды До 0,2 0,001...0,009
Сажа, г/м3 До 0,004 0,01...1,1
Бснз(а)пирен, мкг/ м3 До 25 До 10
Оксиды серы До 0,008 0,002...0,02
Оксиды свинца До 0,02 Отсутствуют

Примечание: в ОГ двигателей содержатся также: свинец, кремний, медь, кальций, цинк, фосфор, марганец, хром, натрий, барий, железо, никель и ряд других веществ, входящие в состав присадок смазочного масла либо являющиеся продуктами износа деталей двигателя, попадающие в КС вместе с маслом.

Рассмотрим подробнее механизмы образования тех из веществ, содержание которых в отработавших газах двигателей внутреннего сгорания нормируется или предполагается нормировать в будущем.

Сажа. При сгорании углеводородных топлив в различных горелках и двигателях внутреннего сгорания в отработавших газах может содержаться твердый углеродный продукт в дисперсном состоянии (сажа). Другие твердые углеродистые соединения (пироуглерод и нитевидный углерод) обычно в отработавших газах не содержатся, так как образование их происходит на твердых поверхностях.

Частица сажи — это агломерат пакетов (кристаллитов), которые, в свою очередь, состоят из набора отдельных сеток (пластинок) графитовых шестиугольников. Кроме углерода сажа содержит 1—3% по массе (т. е. 10—30% по числу атомов) водорода, который может быть химически или физически связан с углеродом.

Образование сажи представляет собой объемный процесс термического разложения (пиролиза) углеводородов в газовой (паровой) фазе в условиях сильного недостатка (отсутствия) окислителя (кислорода).

Механизм образования включает несколько стадий:

— образование зародышей;

— рост зародышей до первичных частиц (шестиугольных пластинок графита);

— увеличение размеров частиц (коагуляция) до сложных образований — конгломератов, включающих 100—150 атомов углерода;

— выгорание.

Скорость образования сажи определяется скоростью химических процессов, приводящих к возникновению зародыша (т. е. кинетикой процесса).

Концентрационный предел начала образования сажи зависит от многих факторов (температуры, давления, вида топлива, типа горелки) и по α составляет 0,33—0,7. С увеличением температуры начало образования сажи сдвигается в сторону более богатых топливовоздушных смесей, с увеличением давления — в сторону более бедных смесей. Максимум сажесодержания при повышении температуры процесса также сдвигается в сторону богатых смесей. Необходимо отметить, что на образование сажи в пламени (горелка или цилиндр двигателя внутреннего сгорания) коэффициент избытка воздуха влияет не непосредственно, а через физические факторы (температура пламени; появление зон смеси с концентрациями, благоприятными для термического разложения).

Количество образовавшейся сажи в большой степени зависит от температуры в зоне пиролиза углеводородов. С ростом температуры это количество резко увеличивается, так как скорость реакции контролируется ее кинетикой. Подобным образом влияет и увеличение давления.

Различные углеводороды (с одинаковым числом атомов С) по степени увеличения склонности к образованию сажи располагаются следующим образом: нормальные парафины, изопарафины, циклопарафины, олефины, циклоолсфнни, деолефины, ароматики.

В дизеле можно наблюдать явление, когда при большой нагрузке топливо, содержащее ароматические углеводороды, меньше образует дыма, чем топливо, имеющее в своем составе парафины. Это происходит из-за более длительного периода индукции в случае сгорания топлива с ароматическими углеводородами, вследствие чего смесь в камере сгорания имеет больше возможностей стать гомогенной до начала горения.

В процессе образования и после образования сажевых частиц может происходить выгорание их в реакциях с радикалами ОН или кислородом. В основном при составах смеси беднее стехиометрического (в дизелях) происходит прямое окисление сажи кислородом. Скорость выгорания сажи значительно меньше скорости выгорания газообразных продуктов неполного сгорания (например, СО). Скорость выгорания сажи существенно зависит от размеров частиц (поверхности). Было определено, что вся образовавшаяся в пламени сажа может выгореть только в том случае, если размеры частиц не будут превышать 100 А. Все это позволяет объяснить особенности выделения сажи в процессах сгорания в двигателях.

При сгорании гомогенных топливовоздушных смесей концентрационные пределы начала образования сажи выходят за границы диапазона α, при которых нормально работают карбюраторные двигатели с искровым зажиганием. В карбюраторных двигателях, имеющих в цилиндре перед началом сгорания гомогенную (или близкую к ней) топливовоздушную смесь, содержание сажи в отработавших газах незначительно. В цилиндре дизеля происходит диффузионное горение гетерогенной смеси. При этом в самой зоне пламени состав смеси близок к стехиометрическому, и температуры соответственно высоки. К этим высокотемпературным зонам примыкают зоны со значительно более богатой смесью (до α = 0); здесь создаются благоприятные условия для пиролиза с очень малым доступом кислорода. Таким образом, характер смесеобразования и сгорания в дизелях предопределяет значительно большее, по сравнению с двигателями с искровым зажиганием, образование сажи.

Исследование образования сажи в цилиндре дизеля 12/14 с камерой сгорания в поршне, выполненное с использованием газоотборного клапана стробоскопического типа, показало, что выгорание сажи в процессе расширения может быть значительно.

Моноксид углерода СО. В двигателях внутреннего сгорания образование окиси углерода может происходить в ходе холоднопламенных реакций, при сгорании топливовоздушных смесей с некоторым недостатком кислорода, а также вследствие диссоциации двуокиси углерода, происходящей при высоких температурах (более 2000 К). В процессе последующего сгорания и расширении при наличии кислорода возможно горение окиси углерода. Оно происходит по цепному механизму, который установлен на основе работ советских ученых (Я. Б. Зельдовича, Н. Н. Семенова, В. Н. Кондратьева).

Так как при нормальной эксплуатации дизелей концентрация СО в отработавших газах обычно не велика (не превышает 0,1—0,2%), то основное внимание в последние годы было уделено анализу механизма образования и сгорания окиси углерода в карбюраторных двигателях.

Сравнение равновесных концентраций СО, подсчитанных для идеального цикла с подводом тепла при постоянном объеме в зависимости от расширения смеси с опытными данными о концентрациях СО в отработавших газах показало, что последние значительно выше равновесных при температуре конца расширения. Значения 0 и 1,0 по оси абсцисс соответствуют началу и концу расширения. Замеренные концентрации СО ближе к равновесным при условиях начала расширения. Исследования последних лет показали, что это расхождение может быть объяснено на основе законов кинетики химических реакций. В качестве реакции, определяющей содержание окиси углерода в отработавших газах, принята реакция.

При частоте вращения коленчатого вала n=1500 об/мин процесс расширения в четырехтактном двигателе длится около 20 мс. За это время температура изменяется примерно на 1200 К, т. е. скорость изменения температуры составляет около 60 К/(м∙с).

В определенный момент расширения происходит "закалка" продуктов догорания окиси углерода. При составе смеси, близкой к стехиометрическому, температура "закалки" равна примерно 1020 К. По мере обогащения смеси температура "закалки" несколько увеличивается, приближаясь при α ≈0,7 к максимальной теоретической температуре цикла.

Углеводороды СХНУ — свыше двухсот различных углеводородов, образующихся в отработавших газах двигателей в результате:

— реакций цепочно-теплового взрыва — пиролиза и синтеза (полициклические ароматические углеводороды (ПАУ), альдегиды, фенолы);

— неполноты сгорания в результате нарушения процесса горения (из-за прекращения реакций окисления углеводородов при низких температурах, неоднородности топливо-воздушной смеси, пропусков зажигания в отдельных циклах или цилиндрах двигателя (несгоревшие компоненты топлива и масла).

В ряде исследований было также установлено, что вблизи сравнительно холодных стенок камеры сгорания происходит гашение пламени. Это приводит к замедлению или исключению реакций горения в части смеси, находящейся в зоне гашения. Фотографирование процесса сгорания в четырехтактном бензиновом двигателе через кварцевое окно в головке цилиндра позволило определить толщину зоны гашения в пределах 0,05—0,38 мм.

Диоксид углерода СО2 не является токсичным веществом. Его вредность связана с постоянным повышением концентрации в атмосфере Земли и его влиянием на изменение климата планеты. В последние десятилетия начали предпринимаются меры по регламентированию его выброса энергетическими, промышленными и транспортными объектами.

Львиная доля образовавшихся в цилиндрах двигателя СО окисляется до СО2, не проникая за пределы камеры сгорания, так как померенная объемная доля двуоксиси углерода в отработавших газах примерно равна 10—15%, т. е. в 300—450 раз больше, чем в нашей атмосфере.

Процесс окисления СО в СО2 идет в выпускном трубопроводе и в нейтрализаторах (дожигателях) отработавших газов двигателей внутреннего сгорания, устанавливающихся на современном автомототранспорте для принудительного окисления СО и несгоревших углеводородов до СО2, дабы соблюдать нормы токсичности.

Величина выбросов CО2 зависит от физико-химических и теплофизических свойств топлив и их расхода. При использовании в качестве автомобильного топлива водорода в продуктах сгорания СО2 отсутствует.

Оксиды азота NOX представляют набор следующих соединений: N2O, NO, N2O3, NO2, N2O4 и N2O5. Преобладает NO (99% в бензиновых двигателях и более 90% в дизелях).

В камере сгорания NO может образовываться:

1)при высокотемпературном окислении азота воздуха (термический NO);

2)в результате низкотемпературного окисления азотсодержащих соединений топлива (топливный NO);

3)из-за столкновения углеводородных радикалов с молекулами азота в зоне реакций горения при наличии пульсаций температуры (быстрый NO).

В процессе сгорания топлив окислы азота (практически лишь окись NO) образуются в результате реакций окисления азота кислородом воздуха. В реакции образования NO может участвовать как азот, содержащийся в топливе, так и азот атмосферного воздуха.

В нефтепродуктах содержится до 5% азотистых соединений (0,3—0,6% по весу чистого азота). Основными азотосодержащими компонентами твердого и жидкого топлив являются пиридин и его производные. Азот топлива легче вступает в реакцию окисления, чем атмосферный азот.

При содержании в топливе азота в количестве 1,4% от веса было зафиксировано в процессе сгорания увеличение выделения NO примерно в 10 раз.

Исследования Р. А. Липштейна показывают, что при перегонке нефти азотистые соединения остаются в тяжелых фракциях. Фракции с температурой перегонки до 350°С содержат не более 4% всего азота, находящегося в нефти. Поэтому для дизельных топлив, а тем более бензинов, получаемых из нефти, можно не учитывать при анализе образования NO реакции с топливным азотом.

Однако для используемых в тихоходных дизелях моторных топлив (ДТ-1, ДТ-2, ДТ-3), у которых только 15% составляющих топлив перегоняется до температуры 250°С, а также для мазутов нельзя пренебрегать содержанием топливного азота.

Все проведенные исследования по образованию NОХ в цилиндрах двигателей внутреннего сгорания подтверждают термический характер данной реакции.

Сера, которая содержится в автомобильном топливе, во время горения интенсивно окисляется до двуокиси серы по способу, похожему на механизм образования СО.

Свинец в составе твердых частиц (из-за использования этилированных бензинов) присутствует в виде соединений галогенидов свинца, которые образуются по сходному механизму образования сажи.

Альдегиды RCHO

В дизелях альдегиды образуются в период предпламенных реакций, протекающих в период подготовки топливовоздушной смеси к сгоранию, когда процесс окисления протекает при низких температурах (их называют также холодным пламенем). Альдегиды и пероксиды (перекиси) являются типичными продуктами этих реакций. При образовании альдегидов выделяется тепло. В процессе самовоспламенения топлива они активной роли не играют. Как в дизелях, так и в двигателях с искровым зажиганием могут образоваться альдегиды, если часть процесса сгорания протекает при низких температурах, что наблюдается при охлаждении горящей смеси сравнительно холодными поверхностями, ограничивающими камеру сгорания, или при сгорании очень обедненной смеси, характерной для малых нагрузок у дизеля, или сгорание последней порции топлива в бензиновых двигателях, или в конце процесса сгорания в двигателях с послойным смесеобразованием. В процессе сгорания, происходящем при высоких температурах, альдегиды могут сгорать.


 







Дата добавления: 2015-03-11; просмотров: 1453. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия