Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Погрешности основных арифметических операций





1. Международные отношения: функции, цели и средства реализации.

2. Внешняя политика и ее функции.

3. Субъекты международных отношений.

4. Принципы международных отношений.

5. Мировая политика: основные черты.

6. Особенности мирового политического процесса.

7. Особенности внешней политики современной России.

8. Понятие геополитики.

9. Основные законы и категории геополитики.

10. Основные идеи и принципы классиков геополитики.

11. Русская школа геополитики.

12. Евразия как особый геополитический мир.

13. Геополитические последствия распада СССР для России.

14. Россия и страны СНГ.

 

 

Погрешности основных арифметических операций

Правило 1: Пусть и — приближенные значения чисел и , тогда абсолютная погрешность алгебраической суммы (суммы или разности) не превосходит суммы абсолютных погрешностей слагаемых, т.е.[1]:

Правило 2: Пусть и — ненулевые числа одного знака, тогда:

1. ; 2. .

Здесь , а [1].

Первое из равенств означает, что при суммировании чисел одного знака не происходит потери точности, если оценивать точность в относительных единицах. Совсем иначе обстоит дело при вычитании чисел одного знака. Здесь граница относительной ошибки возрастает в раз и возможна существенная потеря точности. Если числа и близки настолько, что ,то и не исключена полная или почти полная потеря точности. Когда это происходит, говорят о катастрофической потери точности.

При построении численного метода решения задачи следует избегать вычитания близких чисел одного знака. Если же такое вычитание неизбежно, то следует вычислять аргументы с повышенной точностью, учитывая ее потерю примерно раз.

Правило 3: Для относительных погрешностей произведения и частного приближенных чисел верны оценки:

1. ; 2. ;

в последней из которых [1].

Приведенные равенства чаще всего используют для практической оценки погрешности.

Выполнение арифметических операций над приближенными числами, как правило, сопровождается потерей точности. Единственная операция, при которой потеря не происходит, — это сложение чисел одного знака. Наибольшая потеря точности может произойти при вычитании близких чисел одного знака.







Дата добавления: 2015-03-11; просмотров: 1161. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия