Гармонический осциллятор. Пружинный, физический и математический маятники
Гармоническим осциллятором называется система, совершающая колебания, описываемые уравнением вида (140.6): Колебания гармонического осциллятора являются важным примером периодического движения и служат точной или приближенной моделью во многих задачах классической и квантовой физики. Примерами гармонического осциллятора являются пружинный, физический и математический маятники, колебательный контур (для токов и напряжений столь малых, что элементы контура можно было бы считать линейными; см. §146). 1. Пружинный маятник — это груз массой т, подвешенный на абсолютно упругой пружине и совершающий гармонические колебания под действием упругой силы F=-kx, где k — коэффициент упругости, в случае пружины называемый жесткостью. Уравнение движения маятника Из выражений (142.1) и (140.1) следует, что пружинный маятник совершает гармонические колебания по закону х=A cos(w0t+j) с циклической частотой w0=Ök/m (142.2) и периодом T=2pÖm/k. (142.3) Формула (142.3) справедлива для упругих колебаний в пределах, в которых выполняется закон Гука (см. (21.3)), т. е. когда масса пружины мала по сравнению с массой тела. Потенциальная энергия пружинного маятника, согласно (141.5) и (142.2), равна П=kх2/2. 2. Физический маятник — это твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси подвеса, не проходящей через центр масс тела (рис.201). Если маятник отклонен из положения равновесия на некоторый угол а, то в соответствии с уравнением динамики вращательного движения твердого тела (18.3) момент М возвращающей силы можно
записать в виде где У — момент инерции маятника относительно оси, проходящей через точку О, l — расстояние между точкой подвеса и центром масс маятника, Ft=- mg sina» mga — возвращающая сила (знак минус обусловлен тем, что направления Ft и a всегда противоположны; sina»a соответствует малым колебаниям маятника, т. е. малым отклонениям маятника из положения равновесия). Уравнение (142.4) можно записать в виде Принимая w0=Ö mgl/J. (142.5) получим уравнение идентичное с (142.1), решение которого (140.1) известно: a=a0cos (w 0 t +j). (142.6) Из выражения (142.6) следует, что при малых колебаниях физический маятник совершает гармонические колебания с циклической частотой w0 (см (142.5)) и периодом Т = 2p/w0=2pÖ J /(mgl)=2pÖ L/g. (142.7) где L = J/(ml) — приведенная длина физического маятника. Точка О' на продолжении прямой ОС, отстоящая от оси подвеса на расстоянии приведенной длины L, называется центром качаний физического маятника (рис. 201). Применяя теорему Штейнера (16.1), получим т. е. ОО' всегда больше ОС. Точка подвеса О и центр качаний О' обладают свойством взаимозаменяемости:если ось подвеса перенести в центр качаний, то точка О прежней оси подвеса станет новым центром качаний и период колебаний физического маятника не изменится. 3, Математический маятник— это идеализированная система, состоящая из материальной точки массой т, подвешенной на нерастяжимой невесомой нити, и колеблющаяся под действием силы тяжести. Хорошим приближением математического маятника является небольшой тяжелый шарик, подвешенный на тонкой длинной нити. Момент инерции математического маятника J = ml 2, (142.8) где l — длина маятника. Так как математический маятник можно представить как частный случай физического маятника, предположив, что вся его масса сосредоточена в одной точке — центре масс, то, подставив выражение (142.8) в формулу (142.7), получим выражение для периода малых колебаний математического маятника T=2pÖl/g. (142.9) Сравнивая формулы (142.7) и (142.9), видим, что если приведенная длина L физического маятника равна длине l математического маятника, то их периоды колебаний одинаковы. Следовательно, приведенная длина физического маятника — это длина такого математического маятника, период колебаний которого совпадает с периодом колебаний данного физического маятника.
|