Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
Колеблющееся тело может участвовать в нескольких колебательных процессах, тогда необходимо найти результирующее колебание, иными словами, колебания необходимо сложить. Сложим гармонические колебания одного направления и одинаковой частоты воспользовавшись методом вращающегося вектора амплитуды (см. § 140). Построим векторные диаграммы этих колебаний (рис.203). Так как векторы a 1 и А 2 вращаются с одинаковой угловой скоростью w0, то разность фаз (j2-j1) между ними остается постоянной. Очевидно, что уравнение результирую-
щего колебания будет х=х 1 +х 2 =А cos(w0 t +j). (144.1) В выражении (144.1) амплитуда А и начальная фаза j соответственно задаются соотношениями Таким образом, тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, совершает также гармоническое колебание в том же направлении и с той же частотой, что и складываемые колебания. Амплитуда результирующего колебания зависит от разности фаз (j2-j1) складываемых колебаний. Проанализируем выражение (144.2) в зависимости от разности фаз (j2-j1): 1) j2-j1=±2mp (m = 0, 1, 2,...), тогда A=A 1 +A 2, т.е. амплитуда результирующего колебания А равна сумме амплитуд складываемых колебаний; 2) j2-j1= ±(2m+1)p (m=0, 1, 2,...), тогда A = │A 1 -A 2 │, т.е. амплитуда результирующего колебания равна разности амплитуд складываемых колебаний. Для практики особый интерес представляет случай, когда два складываемых гармонических колебания одинакового направления мало отличаются по частоте. В результате сложения этих колебаний получаются колебания с периодически изменяющейся амплитудой. Периодические изменения амплитуды колебания, возникающие при сложении двух гармонических колебаний с близкими частотами, называются биениями. Пусть амплитуды складываемых колебаний равны А, а частоты равны w и w+Dw, причем Dw<<w. Начало отсчета выберем так, чтобы начальные фазы обоих колебаний были равны нулю: Складывая эти выражения и учитывая, что во втором сомножителе Dw/2<<w, найдем Получившееся выражение есть произведение двух колебаний. Так как Dw<<w, то сомножитель, стоящий в скобках, почти не изменяется, когда сомножитель coswt совершит несколько полных колебаний. Поэтому результирующее колебание х можно рассматривать как гармоническое
с частотой w, амплитуда А б, которого изменяется по следующему периодическому закону: Частота изменения A б, в два раза больше частоты изменения косинуса (так как берется по модулю), т.е. частота биений равна разности частот складываемых колебаний: wб=Dw. Период биений Tб=2p/Dw. Характер зависимости (144.3) показан на рис. 204, где сплошные жирные линии дают график результирующего колебания (144.3), а огибающие их — график медленно меняющейся по уравнению (144.4) амплитуды. Определение частоты тона (звука определенной высоты (см. §158)) биений между эталонным и измеряемым колебаниями — наиболее широко применяемый на практике метод сравнения измеряемой величины с эталонной. Метод биений используется для настройки музыкальных инструментов, анализа слуха и т. д. Любые сложные периодические колебания s=f(t) можно представить в виде суперпозиции одновременно совершающихся гармонических колебаний с различными амплитудами, начальными фазами, а также частотами, кратными циклической частоте w0: Представление периодической функции в виде (144.5) связывают с понятием гармонического анализа сложного периодического колебания,или разложения Фурье. Члены ряда Фурье, определяющие гармонические колебания с частотами w0, 2w0, 3w0,..., называются первой (или основной), второй, третьей и т. д. гармониками сложного периодического колебания.
|