Механические гармонические колебания
Пусть материальная точка совершает прямолинейные гармонические колебания вдоль оси координат х около положения равновесия, принятого за начало координат. Тогда зависимость координаты х от времени t задается уравнением, аналогичным уравнению (140.1), где s=x: х=А cos(w0t+j). (141.1) Согласно выражениям (140.4) и (140.5), скорость v и ускорение а колеблющейся точки соответственно равны Сила F=ma, действующая на колеблющуюся материальную точку массой т, с учетом (141.1) и (141.2) равна F= -mw 20 x. Следовательно, сила пропорциональна смещению материальной точки из положения равновесия и направлена в противоположную сторону (к положению равновесия). Кинетическая энергия материальной точки, совершающей прямолинейные гармонические колебания, равна Потенциальная энергия материальной точки, совершающей гармонические колебания под действием упругой силы F, равна Сложив (141.3) и (141.5), получим формулу для полной энергии: Полная энергия остается постоянной, так как при гармонических колебаниях справедлив закон сохранения механической энергии, поскольку упругая сила консервативна. Из формул (141.4) и (141.6) следует, что Т и П изменяются с частотой 2w0, т. е. с частотой, которая в два раза превышает частоту гармонического колебания.
На рис. 200 представлены графики зависимости х, Т и П от времени. Так как <sin2a>= <cos2aa>=1/2, то из формул (141.3), (141.5) и (141.7) следует, что <Т> = <П>=1/2E.
|