Студопедия — Прямая на плоскости. Прямую линию на плоскости от­носительно системы декартовых прямо­угольных координат можно задать раз­личными способами
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Прямая на плоскости. Прямую линию на плоскости от­носительно системы декартовых прямо­угольных координат можно задать раз­личными способами






ТЕМА 2. АЛГЕБРАИЧЕСКИЕ ЛИНИИ ПЕРВОГО И ВТОРОГО ПОРЯДКА.

Алгебраической линией (кривой) п -го порядка называется линия, определяемая алгебраическим уравнением п-й степени относительно декартовых координат.

Линиями первого порядка являются прямые, а к важнейшим линиям второго порядка относятся окружность, эллипс, гипербола, парабола.

 

Прямую линию на плоскости от­носительно системы декартовых прямо­угольных координат можно задать раз­личными способами. Прямая однозначно определяется углом, образуемым ею с осью Ох, и величиной направленного отрезка, отсекаемого на оси Оу, коорди­натами двух точек и т.п. В зависимости от способа задания прямой рассматри­вают различные виды ее уравнения.

Различные виды уравнения прямой на плоскости.

Из курса математики средней школы известно уравнение пря­мой, пересекающей ось Оу:

 
 


(1)

в котором k- угловой коэффициент, определяемый формулой

 

где - угол между прямой и осью Ох; b = - величина направлен­ного отрезка, отсекаемого прямой на оси Оу. Уравнение (1) называется уравнением прямой с угловым коэффициентом.

Если прямая параллельна оси Ох, т.е. , k =0 то уравнение (1) прини­мает вид

 
 

 


Выразим угловой коэффициент прямой (1) через координаты ее двух различных точек . Так как эти точки ле­жат на прямой (1), то их координаты удовлетворяют данному уравнению, т.е.

 
 


Вычитая первое равенство из второго, получаем

 
 


Откуда (2)

 

Пусть заданы угловой коэффициент k прямой и ее точка . Составим уравнение этой прямой. Зафиксируем произволь­ную точку М(х, у) данной прямой и найдем выражение для ее углового коэффициента по формуле (2), положив в ней у2= у,

 
 

 


(3)

 

Уравнение (3) называется уравнением прямой, проходящей через данную точку в данном направлении.

Пучком прямых на плоскости называется множество всех пря­мых этой плоскости, проходящих через данную точку (центр пучка).

Составим уравнение прямой, проходящей через две данные раз­личные точки где . Поскольку эта прямая проходит через точку , уравнение (3) с учетом фор­мулы (2)

 

 

запишется так:

 
 


(4)

 

 

Уравнение (4) называется уравнением прямой, проходящей через две данные точки.

Обозначив равные отношения буквой t, получим

 
 

 


(5)

 

Отметим, что при t= 0 из уравнений (5) получаем координаты точки , при t= 1 - координаты точки М22, у2), при - коор­динаты любой внутренней точки отрезка 1М2]; когда t меняется в бесконечном промежутке , точка М(х, у) описывает рассмат­риваемую прямую. Уравнения (5) называются параметрическими уравнениями прямой..

Пусть прямая (АВ) (рис.) отсекает на координатных осях от­резки, величины которых соответственно равны а и b, т.е. О А = а, ОB = b, А(а, 0), B (0, b). Применяя уравнение (4) для этого случая, т.е., полагая х1= а, у1= 0, х2= 0, у2= b, получаем уравнение в отрезках на осях координат:

 
 


(6)

 

2. Угол между двумяпрямыми. Условия параллельности и перпендикулярности двух прямых.

Рассмотрим две прямые; предположим, что ни одна из них не параллельна оси Оу (рис.). В этом случае прямые можно задать их уравнениями с угловыми коэффициентами

 
 


(7)

 
 


(8)

где

(9)

 
 


(в силу предположения

Обозначим через угол наклона второй прямой к первой, т.е. угол, на который нужно повернуть вокруг точки пересечения первую из них, чтобы она совпала со второй. Из треугольника A1A2N (рис.) следует, что поэтому

 

Подставив выражения (9) в последнее равенство, получим искомую формулу

(10)

 

 

Необходимое и достаточное условие параллельности прямых (7) и (8) выражается равенством

(11)

 

Пусть прямые, заданные уравнениями (7) и (8), перпенди­кулярны, т.е. , в этом случае , следовательно,

 

откуда

(12)

 

Если прямые заданы общими уравнениями

 

(13)

 

(14)

 

то тангенс угла между ними определяется формулой

 
 


(15)

 

В самом деле, разрешив уравнения (13), (14) относительно у и сравнив их соответственно с уравнениями (7), (8), получим вы­ражения для угловых коэффициентов

 
 


(16)

 

Формула (15) следует из формулы (10) и равенств (16).

Необходимое и достаточное условие параллельности прямых (13) и (14) выражается равенством

(17)

 

а условие их перпендикулярности – равенством

 
 


(18)

 







Дата добавления: 2015-04-16; просмотров: 371. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия