Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение формата микрокоманды





На разрядность полей микрокоманды влияют следующие параметры:

□количество различных микроопераций, формируемых УА, в конечном итоге определяет (с учетом выбранного способа кодирования) длину поля микроопераций;

□ количество различных логических условий определяет длину поля x;

□ количество вершин ГСА связано с общим числом микрокоманд, а следовательно, с объемом памяти микропрограмм и разрядностью поля адреса микрокоманды.

Множество микроопераций Y, используемых в заданной ГСА Y= {y1, y2,...y13}, мощность множества .При горизонтальном кодировании поле микроопераций будет занимать 13 разрядов. Вертикальный способ кодирования микроопераций к заданной ГСА неприменим, поскольку ГСА содержит вершины с двумя и тремя микрооперациями. Попробуем реализовать разбиение множества Y на подмножества несовместимых микроопераций. Воспользуемся методом прямого включения, учитывая, что отношение совместимости задано на самой ГСА. Строго говоря, следовало бы построить матрицу совместимости микроопераций, но в рассматриваемом примере небольшой размер алгоритма позволяет определять отношение совместимости непосредственно по ГСА.

На сколько подмножеств следует разбивать исходное множество? По меньшей мере, на s=3 в нашем случае. Образуем три подмножества — Y 1, Y 2, Y3 и разместим в них микрооперации операторной вершины, имеющей s микроопераций. Если в ГСА таких вершин несколько — выберем любую из них.

Теперь разместим по множествам микрооперации следующей вершины, содержащей (в нашем случае) три микрооперации:

Заметим, что первая микрооперация второй рассматриваемой вершины совпадает с первой микрооперацией первой вершины. Она уже присутствует в множестве поэтому не включается вторично. Наконец, разместим микрооперации третьей "тройной" вершины:

Теперь нераспределенными остались микрооперации (некоторые) "двойных" и "одинарных" вершин. Вершина 2, у6) — обе микрооперации несовместимы с уже распределенными, поэтому могут располагаться произвольно, лишь бы они находились в разных подмножествах:

Вершина 2, у9)у9 нельзя помещать в Y1, поскольку совместимая с ней . Подмножества лучше заполнять равномерно, поэтому разместим у9 в Y 3:

Остались две нераспределенные микрооперации — y3 и y10, первая из которых совместима с у5, поэтому ее нельзя помещать в Y 2, а вторая несовместима ни с какими другими и может размещаться произвольно. Поместим их в множество, имеющее пока наименьшую мощность — Y1:

Все 13 микроопераций распределились по трем подмножествам, при этом выполняются условия (4.8) (т. е. имеет место разбиение исходного множества Y), однако УА обычно должен вырабатывать еще одну микрооперацию, свидетельствующую об окончании выполнения алгоритма и предназначенную для использования не в ОА, а в управляющем автомате верхнего уровня иерархии. Назовем эту микрооперацию ук и включим в произвольное множество (например, в Y2), поскольку она, естественно, несовместима ни с одной микрооперацией. Итак, имеем следующее распределение:

Для кодирования элементов каждого из трех подмножеств потребуется по три двоичных разряда. Может показаться, что для Y 3 хватит и двух, ведь однако следует учесть, что в каждом подмножестве необходимо предусмотреть один код для случая отсутствия микрооперации из этого подмножества в микрокоманде. Оптимальным разбиением исходного множества будет такое, когда где r— натуральное число.

В подмножестве Y3 всего одна "лишняя" микрооперация, а среди кодов Y1 и Y2 есть свободные. Попробуем перенести одну из микроопераций из Y3 в другое подмножество, сохраняя, естественно, требование к попарной несовместимости всех микроопераций одного подмножества. Очевидно, первые три элемента подмножества Y3 нельзя перенести в другое, т. к. они являются микрооперациями из "тройных" вершин. Зато микрооперация у9 совместима только с , поэтому у9 можно перенести в Y2. Окончательно получим, предварительно упорядочив элементы подмножеств в порядке возрастания индексов:

Теперь мы можем определить размеры полей микрокоманды. Поле микроопераций будет состоять из трех подполей — Y1, Y2, Y3 (назовем их по именам соответствующих подмножеств), размером в 3, 3 и 2 двоичных разрядов соответственно,

Поле номера условия x должно содержать номер одного из двух логических условий — х1, х2 (один разряд?), однако для повышения гибкости процесса микропрограммирования удобно иметь возможность выбирать еще и тождественно истинное и тождественно ложное условия. Итак, поле x занимает два разряда.

Наконец, поле адреса определяется объемом памяти микропрограмм. Если в нашем примере мы будем считать, что разрабатываем УА только для реали зации микропрограммы рис. 4.14, а она содержит 8 вершин, не считая начальной, конечной и условных, количество микрокоманд (каждая микрокоманда — ячейка памяти, имеющая свой адрес), выдаваемых УА, будет никак не менее 8, а реально — (1, 2,..., 1, 3)х8, то для поля адреса в микрокоманде следует отвести 4 разряда (24=16>1, 3х8≈11).

В поле адреса будет располагаться адрес памяти — двоичный номер ячейки, а в полях Yi и x — коды микроопераций и логических условий. Окончательно формат микрокоманды будет иметь вид, приведенный на рис. 4.15.

Рис. 4.15. Формат микрокоманды







Дата добавления: 2015-04-16; просмотров: 812. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия