Задача о наилучшем использовании ресурсов. Пусть некоторая производственная единица (цех, завод, объединение и т. д.), исходя из конъюнктуры рынка, технических или технологических возможностей и имеющихся ресурсов, может выпускать n различных видов продукции (товаров), известных под номерами, обозначаемыми индексом j . Будем обозначать эту продукцию . Предприятие при производстве этих видов продукции должно ограничиваться имеющимися видами ресурсов, технологий, других производственных факторов (сырья, полуфабрикатов, рабочей силы, оборудования, электроэнергии и т. д.). Все эти виды ограничивающих факторов называют ингредиентами . Пусть их число равно m; припишем им индекс i . Они ограничены, и их количества равны соответственно условных единиц. Таким образом, - вектор ресурсов. Известна экономическая выгода (мера полезности) производства продукции каждого вида, исчисляемая, скажем, по отпускной цене товара, его прибыльности, издержкам производства, степени удовлетворения потребностей и т. д. Примем в качестве такой меры, например, цену реализации , т.е. — вектор цен. Известны также технологические коэффициенты , которые указывают, сколько единиц i –го ресурса требуется для производства единицы продукции >j -го вида. Матрицу коэффициентов называют технологической и обозначают буквой А. Имеем . Обозначим через план производства, показывающий, какие виды товаров нужно производить и в каких количествах, чтобы обеспечить предприятию максимум объема реализации при имеющихся ресурсах. Так как - цена реализации единицы j -й продукции, цена реализованных единиц будет равна , а общий объем реализации . Это выражение — целевая функция, которую нужно максимизировать. Так как - расход i -го ресурса на производство единиц j -й продукции, то, просуммировав расход i -горесурса на выпуск всех n видов продукции, получим общий расход этого ресурса, который не должен превосходить единиц: Чтобы искомый план был реализован, наряду с ограничениями на ресурсы нужно наложить условие неотрицательности на объёмы выпуска продукции: . Таким образом, модель задачи о наилучшем использовании ресурсов примет вид: (2.33) при ограничениях: (2.34) (2.35) Так как переменные входят в функцию и систему ограничений только в первой степени, а показатели являются постоянными в планируемый период, то (2.33)-(2.35) – задача линейного программирования. Задача о смесях В различных отраслях народного хозяйства возникает проблема составления таких рабочих смесей на основе исходных материалов, которые обеспечивали бы получение конечного продукта, обладающего определенными свойствами. К этой группе задач относятся задачи о выборе диеты, составлении кормового рациона в животноводстве, шихт в металлургии, горючих и смазочных смесей в нефтеперерабатывающей промышленности, смесей для получения бетона в строительстве и т. д. Высокий уровень затрат на исходные сырьевые материалы и необходимость повышения эффективности производства выдвигает на первый план следующую задачу: получить продукцию с заданными свойствами при наименьших затратах на исходные сырьевые материалы. Пример. Для откорма животных используется три вида комбикорма: А, В и С. Каждому животному в сутки требуется не менее 800 г. жиров, 700 г. белков и 900 г. углеводов. Содержание в 1 кг. каждого вида комбикорма жиров белков и углеводов (граммы) приведено в таблице:
Содержание в 1 кг.
| Комбикорм
|
| А
| В
| С
| Жиры
|
|
|
| Белки
|
|
|
| Углеводы
|
|
|
| Стоимость 1 кг
|
|
|
| Сколько килограммов каждого вида комбикорма нужно каждому животному, чтобы полученная смесь имела минимальную стоимость? Математическая модель задачи есть: - количество комбикорма А,В и С. Стоимость смеси есть: Ограничения на количество ингредиентов: Задача о раскрое материалов Сущность задачи об оптимальном раскрое состоит в разработке таких технологически допустимых планов раскроя, при которых получается необходимый комплект заготовок, а отходы (по длине, площади, объему, массе или стоимости) сводятся к минимуму. Рассматривается простейшая модель раскроя по одному измерению. Более сложные постановки ведут к задачам целочисленного программирования. Задача о назначениях Речь идет о задаче распределения заказа (загрузки взаимозаменяемых групп оборудования) между предприятиями (цехами, станками, исполнителями) с различными производственными и технологическими характеристиками, но взаимозаменяемыми в смысле выполнения заказа. Требуется составить план размещения заказа (загрузки оборудования), при котором с имеющимися производственными возможностями заказ был бы выполнен, а показатель эффективности достигал экстремального значения. Пример. Цеху металлообработки нужно выполнить срочный заказ на производство деталей. Каждая деталь обрабатывается на 4-х станках С1, С2, С3 и С4. На каждом станке может работать любой из четырех рабочих Р1, Р2, Р3, Р4, однако, каждый из них имеет на каждом станке различный процент брака. Из документации ОТК имеются данные о проценте брака каждого рабочего на каждом станке:
| С1
| С2
| С3
| С4
| Р1
| 2,3
| 1,9
| 2,2
| 2,7
| Р2
| 1,8
| 2,2
| 2,0
| 1,8
| Р3
| 2,5
| 2,0
| 2,2
| 3,0
| Р4
| 2,0
| 2,4
| 2,4
| 2,8
| Необходимо так распределить рабочих по станкам, чтобы суммарный процент брака (который равен сумме процентов брака всех 4-х рабочих) был минимален. Чему равен этот процент? Обозначим за - переменные, которые принимают значения 1, если i -й рабочий работает на j -м станке. Если данное условие не выполняется, то . Целевая функция есть: Вводим ограничения. Каждый рабочий может работать только на одном станке, то есть Кроме того, каждый станок обслуживает только один рабочий: Кроме того, все переменные должны быть целыми и неотрицательными: .
|