Студопедия — ЛЕКЦИЯ: Ядерный аппарат
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЛЕКЦИЯ: Ядерный аппарат






 

Синтез белка: ДНК àРНК àбелок.

 

Правильность и воспроизведение последовательности аминокислот в белках определяется участком структуры молекулы ДНК, который в конечном счете и отвечает за синтез этого белка. Информация о будущей белковой молекуле передается с места его хранения в место его синтеза посредством иРНК. Нуклеотидный состав информационной РНК отражает состав и последовательность нуклеотидов генного участка молекулы ДНК.

В рибосоме строится полипептидная цепь, последовательность аминокислот в которой определяется последовательностью нуклеотидов в информационной РНК, т.е. последовательностью ее триплетов. Тем самым, центральная догма молекулярной биологии подчеркивает однонаправленность передачи информации только от ДНК к белку через промежуточные звенья.

Главную роль в определении структуры белков принадлежит ДНК. ДНК имеет ограниченную локализацию в клетке, а именно местом ее нахождения в эукариотических клетках служит ядро. У прокариотических организмов, которые не имеют оформленного ядра, ДНК также отделена от остальной части протоплазмы в виде нескольких компактных нуклеоидных образований.

Молекула ДНК – длинная линейная структура, состоящая из двух антипараллельно закрученных цепей, основными мономерами является 4 вида дезоксирибонуклеотидов. Чередование и последовательность этих дезоксирибонуклеотидов в цепи уникальна и специфична для каждого участка молекулы ДНК и для каждого вида. Различные достаточно длинные участки молекулы ДНК ответственны за синтез разных белков, поэтому одна молекулы ДНК может определить синтез большого числа функционально и химически различных белков. И за синтез каждого белка отвечает определенный участок молекулы ДНК. Такой участок молекулы ДНК часто обозначают термином цистрон.

В уникальной последовательности структуры гена заключена вся необходимая информация о структуре белка. Основной принцип, который лежит в основе структуры ДНК – это принцип комплементарности. Комплементарными являются пары нуклеотидов А-Т; Г-Ц, соединенные водородными связями. Сама по себе молекулы ДНК не является самовоспроизводящейся молекулой. Для осуществления процесса репликации необходима деятельность специального фермента, который называется ДНК-полимераза. Этот фермент осуществляет последовательно идущий от одного конца молекулы ДНК к другому концу процесс расхождения двух цепей с одновременной полимеризацией на них свободных нуклеотидов по комплементарному принципу. Одна из цепей молекулы ДНК служит матрицей, т.е. создает порядок расположения нуклеотидов в синтезирующихся цепях.

Первым этапом является процесс транскрипции. В этом процессе на цепи ДНК как на матрице происходит синтез химически родственного полимера РНК. Молекула РНК представляет из себя одну цепь, мономерами которой являются четыре сорта рибонуклеотидов, которые являются небольшой модификацией молекул дезоксирибонуклеотидов. Последовательность расположение нуклеотидов в молекуле РНК в точности повторяет расположение соответствующих дезоксирибонуклеотидов одной из цепей ДНК. Поэтому информация, записанная в структуре гена целиком переписывается на информационную РНК.

И с каждого гена снимается неограниченно большое количество молекул информационной РНК. Эти молекулы переносят информацию от места хранения к месту ее реализации.

Процесс транскрипции тоже является ферментативной реакции. Белок, который осуществляет транскрипцию – фермент РНК-полимераза.

Поток аминокислот создается двадцатью видами различных сортов аминокислот. Для создания синтеза белковой молекулы свободные аминокислоты, присутствующие в клетке, должны быть вовлечены в поток вещества, поступающий в рибосому в соответствии с определенным уникальным порядком последовательности, которую задает иРНК. Такое вовлечение аминокислот, которые являются материалом для синтеза белка осуществляется через присоединение свободных аминокислот к акцепторному концу транспортных РНК.

И центральным моментом процесса биосинтеза белка является слияние двух внутриклеточных потоков: потока информации и потока материала в рибосоме. Рибосомы являются местом реализации трансляции, т.е. перевода нуклеотидной последовательность информации в аминокислотную последовательность молекулы белка. И в момент трансляции принцип комплементарности играет главную роль.

Молекулы иРНК, соединенные с рибосомой в каждый конкретный момент имеет лишь определенный участок свой последовательности и только этот участок может взаимодействовать с соответствующей молекулой тРНК.

Ядро, являющееся местом хранения этой информации, очень сложным образом разделяет эти два явления. Процессы транскрипции отделяются от процессов трансляции отделяются различными местами протекания этого всего. Поэтому поверхностный аппарат ядра не просто определяет форму ядра, а разделяет два главных биологических процесса.

 

Функции ядра: хранение генетической информации и обеспечение синтеза белка.

В ядре так же проходит образование субъединиц рибосом.

Ядерный аппарат прокариотических клеток носит название нуклеоид. Его относят к собственно ядреным структурам, т.к. в нем находится молекула ДНК. Нуклеотид бактерий содержит 80% ДНК, а на остальные 20% приходятся рядом расположенные белки и РНК. Толщина нуклеоида 2-7нм. Количество ДНК значительно меньше, чем у эукариотов. Единица измерения пикограммы. 1пг = 10-12г. Дальтон (Да) = 1.67-24г. 1 нуклеотидная пара = 1*103 Да. Длина 0,34 нм.

Для примера, в ядре человека около 6пг ДНК.

 

У прокариот молекулы ДНК замкнутые, циклические, кольцевые.

Отличительной чертой ядерных структур прокариот является то, что синтез РНК и синтез белка может происходить одновременно. Рибосомы связываются с еще не до конца синтезированными молекулами иРНК и начинают производить на них синтез белка. Тройственный союз (ДНК; РНК; рибосомы). У прокариотов процессы транскрипции и трансляции не разобщены территориально.

Отличается процесс проведения ядерного материала не только при делении клетки, но и в течение всего клеточного цикла. Деление всех типов клеток происходит только после удвоения ДНК. У бактерий часто сам процесс разделения тела клетки цитотомия не связан с окончанием синтеза ДНК, т.к. до наступления клеточного деления может начаться второй и даже третий цикл репликации ДНК. В результате такого синтеза ДНК в быстрорастущих культурах микроорганизмов на каждую разделившуюся клетку приходится 1 кольцевая молекула ДНК на промежуточных стадиях ее дальнейшего удвоения. Т.е. каждая дочерняя клетка сразу после деления содержит уже частично реплицированное ядро. При делении бактериальных клеток не происходит конденсации ДНК в составе нуклеоида.

По мере роста клетки в длину зона нуклеоида после синтеза белка увеличивается, а затем делится с помощью специального механизма, который предполагает обособление и разделение дочерних хромосом за счет расхождения мест их укрепления в плазмолемме.

 

Ядро было открыто Брауном в 1833 году. Под ним понимали любые шаровидные структуры в клетках растений. На сегодня мы четко можем сформулировать особенности ядерного аппарата эукариотических клеток:

1) Ядро эукариот отделено от гиалоплазмы специальной структурой, которая называется поверхностный аппарат ядра (ядерная оболочка).

2) Количество ДНК в ядрах эукариот в тысячи раз больше, чем в составе нуклеоидов прокариотических клеток.

3) ДНК эукариот представляет собой сложный нуклеопротеидный комплекс, образующий специальную структуру с названием хроматин, из которого состоят хромосомы.

4) В состав ядер эукариот входит несколько физически не связанных хромосом, каждая из которых содержит одну линейную молекулу ДНК.

5) Каждая хромосомная ДНК представляет собой полирепликонную структуру, т.е. содержит множество автономно реплицирующихся участков.

6) Синтез и образование транскриптов эукариотических клеток сопровождается процессами вторичной их перестройки, включающей в себя как фрагментацию (процессинг), так и сращивание отдельных фрагментов (сплайсинг).

7) Процессы синтеза ДНК и РНК разобщены от процессов синтеза белка.

 

Основные элементы ядра:

1) Поверхностный аппарат ядра. Выполняет наисложнейшую барьерно-рецепторную, транспортную и каркасную функции.

2) Хроматин – главный компонент ядра, в котором заложена генетическая информация.

3) Ядрышко – это хромосомный участок, место синтеза рибосомальных генов и образования субчастиц рибосом.

4) Ядерный белковый матрикс – это не хроматиновый остов, который обеспечивает не только пространственное расположение хромосом в ядре, но и участвует в реализации из активности.

5) Кариоплазма (ядреный сок) – это жидкая фаза клеточного ядра, в которой протекают процессы, связанные с ядреным метаболизмом и внутриядерным транспортом РНК и белков.

 

Хроматин. Термин предложен Флемингом в 1880 году. По биохимическим характеристикам хроматин имеет кислые свойства, которые связаны с тем, что в состав хроматина входит ДНК в комплексе с белками. Белки подразделяются на два типа: гистоны (60%) и негистоновые белки.

Кроме того, в состав хроматиновой фракции входят мембранные компоненты – углеводы, липиды, гликопротеины, РНК. Нитчатые комплексные молекулы дезоксирибонуклеопротеинов. За счет ассоциации гистонов с ДНК образуются лабильные нуклеогистоновые нити, толщиной 10-30нм.

Хроматин может находиться в двух альтернативных состояниях: в деконденсированном, соответствующим интерфазе, и конденсированным, т.е. максимально уплотненным во время митоза. Хроматин интерфазных ядер представляет собой рыхлую деконденсированную структуру, которая имеет разную степень этой разрыхленности. Когда хромосома или ее участок полностью деконденсирован, такие зоны называют диффузным хроматином. Он характерен для интенсивно делящихся и мало специализированных клеток.

При неполном разрыхлении хромосом в составе интерфазного ядра видны участки конденсированного хроматина. Это высоко специализированные клетки или клетки, заканчивающие свой жизненный цикл, где хроматин выглядит массивным темным периферическим слоем, имеет крупные белки хромоцентры. Чем более диффузен хроматин, тем выше в нем идут синтетические процессы и наоборот.

Максимально конденсированный хроматин наблюдается во время митотического деления клетки, когда он обнаруживается в виде хромосом. В это время хромосомы не несут никаких синтетических нагрузок, и такой конденсированный хроматин выполняет функцию перераспределения генетического материала.

Исходя из этих наблюдений, принято считать, что хроматин ядра находится в двух структурно-функциональных состояниях: в рабочем, под которым понимают полную или частичную деконденсацию хроматина, когда происходят процесы транскрипции и редупликации. Или в нерабочем – в состоянии метаболического покоя при максимальной конденсации, когда хроматин перераспределяется между клетками.

В 1932 году Гейцем было замечено, что при метаболизме клетки не все участки конденсированного хроматина переходят в рыхлую зону. И было замечено, что в состоянии метаболической активности не все участки диффузные. Недиффузные участки получили название гетерохроматин (конститутивный хроматин), а остальная масса хроматина стала называться эухроматином.

По этим представления гетерохроматин – компактные участки хромосом, которые в профазе появляются раньше других частей хромосом, а в телофазе – не деконденсируются. Они переходят в интерфазное ядро в виде хромоцентров, сгустков хроматина. Такой гетерохроматин принято называть конститутивным или постоянным.

Конститутивный гетерохроматин практически никогда не меняет своего конденсированного состояния и формирует центромерные и кольцевые участки хромосом. Кроме того, он находится в виде вставочного или интеркалярного гетерохроматина.

Участки конститутивного гетерохроматина обладают целым рядом особенностей:

1) Генетически конститутивный гетерохроматин не активен, т.е. он не транскрибируется.

2) Реплицируется он позже всего остального хроматина.

3) В его состав входит особая сателлитная ДНК, которая обогащена повторяющимися последовательностями нуклеотидов.

Зачем нужны такие участки?

1) Поддерживают общую структуру ядра;

2) Участвует в прикреплении хромосом к ядерной оболочке;

3) Играют роль разделителя между генами;

4) Является местом узнавания гомологичных хромосом при мейозе.

 

Вся остальная масса хроматина может менять степень своей компактизации или упаковки и в зависимости от функциональной активности соответствует эухроматину или факультативному гетерохроматину.

Примером гетерохроматина является Х-хромосома в организме человека. В клетках мужской особи есть Х-хромосома. Она находится в деконденсированном состоянии. Значит, активна, транскрибируется и морфологически ее найти сложно, потому что она в рыхлом состоянии.

В клетках женского организма одна Х-хромосома находится в активном диффузном состоянии, а вторая – в неактивном. Она временно гетерохроматизирована и может существовать у женщин в течение всей жизни. Но, попадая в виде гамет в клетки мужского организма она активируется, деконденсируется и начинает выполнять свои функции. В дифференцированных клетках всего лишь около 10% генов находится в активном состоянии, а остальные находятся в стоянии факультативного гетерохроматина.

Представление о том, что митотические хромосомы после деления клеток превращаются в хроматин интерфазного ядра и, что самое главное, не теряют своей целостности не распадаются на фрагменты, а сохраняют свою физическую индивидуальность, переходя лишь в разрыхленное диффузное состояние было высказано еще ученым Говери в 1887 году.

Эти представления позднее оформились в теорию непрерывности хромосом: Хромосомы, вошедшие в состав дочернего ядра в телофазе сохраняются в нем, хотя и в очень измененном виде, в качестве индивидуальных структур и появляются (становятся видны) снова в виде хромосом в следующей профазе.

Первые исследование о порядке расположения хромосом внутри ядра принадлежат ученому Раблю. В 1885 году, изучая профазные ядра растений, предположил, что внутри ядра хромосомы повторяют свою анафазную ориентацию, т.е. их центромерные участки располагаются на одном полюсе клетки ядра, а теломерные обращены к другому. При этом каждое плечо хромосомы занимает определенную зону, объем которой никогда не заходит в объем соседних хромосом.

Каждая из хромосом образует спиральную структуру, в которой находится 5 – 7 витков, которая в нескольких местах взаимодействует с ядерной оболочкой. Эти места, которые фиксирую хромосому, являются участками конститутивного хроматина.

В состав ДНК эукариот входит две фракции, которые восстанавливаются (процесс – ренатурация) Восстановление исходной двуспиральной структуры молекул ДНК за счет воссоединения ее комплементарных цепей.

Выделяют фракцию с высокой скоростью и с медленной. При этом в составе фракции, ренатурирующей с высокой скоростью, выделяют: 1) фракцию с высоко повторяющимися последовательностями, где сходные участки ДНК повторяются до 106 раз. Это фракции сателлитной ДНК.

Вторая фракция с умеренно повторяющейся последовательностью, которая повторяется в геноме от 100 до 1000 раз.

Сателлитная ДНК не участвует в синтезе основных типов РНК, не связана с процессом синтеза белка. Полагают, что саттелитная ДНК несет информацию, которая играет структурную роль в сохранении и функционировании хромосом.

Например, центромерная ДНК человека состоит из мономеров, в которые входят по 170 нуклеотидных пар. Мономеры в свою очередь образуют еще более крупные последовательности и такие поселедовательности повторяются 1000 раз. С этой специфической центромерной ДНК взаимодействуют особые белки, участвующие в образовании кинетохора – обязательной структуры хромосом, обеспечивающей их связь с микротрубочками веретена деления и определяющей расхождения хромосом в анафазе.

Во фракцию умеренно повторяющихся последовательностей входят гены рибосомных ДНК. Сюда же входят участки для синтеза транспортных РНК, структурные гены, ответственные за синтез определенных белков, в частности белков-гистонов. Такие последовательности повторяются до 400 раз.

Среды высших растений количество ДНК может отличаться в сотни раз у разных видов. У некоторых амфибий в ядрах ДНК больше, чем в ядрах человека в 10 раз.

Различие в количестве ДНК у разных таксонов связаны с неодинаковой долей тех или иных фракций ДНК в ядре. У амфибий на долю повторяющийся последовательностей приходится 80% всей ДНК, у растений до 70%, а у рыб до 60%. Истинное же богатство генетической информации отражает фракция уникальных последовательностей. В среднем, на интерфазное ядро млекопитающих приходится около 2м ДНК. Поэтому огромная линейная молекулы ДНК укладывается в 10мкм клетки определенным сложным образом и ведущую роль в этой укладке молекулы в организации ее расположение компактизации и функциональной активности принадлежит ядерным белкам. Ведущую роль среди ядерных белков играю белки-гистоны.

 







Дата добавления: 2015-04-16; просмотров: 1470. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия