Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Расчет стандартного отклонения ^ для фона контрольной группы





Испытуемые Число пора- Средняя Отклоне- Квадрат от-женных мише- ние от клонения от ней в серии средней (d) средней (d2)

19 10

15,8 15,8 15,8

-3,2 +5.8 +3,8

10.24 33,64 14,44

15 22 15,8 -6,2 38,44

Сумма (^)d2 = 131,94

131,94

Варианса (s2} = • = 9,42.

Н-1 14 Стандартное отклонение (?) = ^'варианса = л/9,42 == 3,07.

' Формула для расчетов и сами расчеты приведены здесь лишь в качестве иллюстрации В наше время гораздо проще приоб­рести гакой карманный микрокалькулятор, в котором подобные расчеты уже заранее запрограммированы, и для расчета стан­дартного отклонения достаточно лишь ввести данные, а затем нажать клавишу s.

О чем же свидетельствует стандартное отклонение, равное 3,07? Оказывается, оно позволяет сказать, что большая часть результатов (выраженных здесь числом пораженных мишеней) располагается в пре­делах 3,07 от средней, т.е. между 12,73 (15,8 - 3,07) и 18,87 (15,8 + 3,07).

Для того чтобы лучше понять, что подразумевается под «большей частью результатов», нужно сначала рассмотреть те свойсгва стандарт­ного отклонения, которые проявляются при изучении популяции с нор­мальным распределением.

Статистики показали, что при нормальном распределении «большая часть» результатов, располагающаяся в пределах одного стандартного отклонения по обе стороны от средней, в процентном отношении всегда одна и та же и не зависит от величины стандартного отклонения: она соответствует 68% популяции (т.е. 34% ее элементов располагается слева и 34%-справа от средней):

Приложение Б

Точно так же рассчитали, что 94,45% элементов популяции при нормальном распределении не выходит за пределы двух стандартных отклонений от средней:

и что в пределах трех стандартных отклонений умещается почти вся популяция - 99,73 %.

99.73%

Учитывая, что распределение частот фона контрольной группы довольно близко к нормальному, можно полагать, что 68% членов всей популяции, из которой взята выборка, тоже будет получать сходные результаты, т.е. попадать примерно в 13-19 мишеней из 25. Распределе­ние результатов остальных членов популяции должно выглядеть следу­ющим образом:

Статистика и обработка данных

99,7%

95,4%

68,3%

34,1 % 34,1 % 2,2%

 

0,13%

13,6%

13,6%

0,13%

 

6,59 9,66 12,73 15,8 18,87 21,94 25,01

-Id +1(7

-2а +2о

-За +3а

Гипотетическая популяция,

из которой взята контрольная группа (фон)

Что касается результатов той же группы после воздействия изучаемо­го фактора, то стандартное отклонение для них оказалось равным 4,25 (пораженных мишеней). Значит, можно предположить, что 68% резуль­татов будут располагаться именно в этом диапазоне отклонений от средней, составляющей 16 мишеней, т.е. в пределах от 11,75 (16 — 4,25) до 20,25 (16 + 4,25), или, округляя, 12 — 20 мишеней из 25. Видно, что здесь разброс результатов больше, чем в фоне. Эту разницу в разбросе между двумя выборками для контрольной группы можно графически представить следующим образом:

12,73 15,8 18,87

-la +lo Фон

 

294 Приложение Б

-1о +1о После воздействия

Поскольку стандартное отклонение всегда соответствует одному и тому же проценту результатов, укладывающихся в его пределах вокруг средней, можно утверждать, что при любой форме кривой нормального распределения та доля ее площади, которая ограничена (с обеих сторон) стандартным отклонением, всегда одинакова и соответствует одной и той же доле всей популяции. Это можно проверить на тех наших выборках, для которых распределение близко к нормальному,-на дан­ных о фоне для контрольной и опытной групп.

Итак, ознакомившись с описательной статистикой, мы узнали, как можно представить графически и оценить количественно степень разбро­са данных в том или ином распределении. Тем самым мы смогли понять, чем различаются в нашем опыте распределения для контрольной группы до и после воздействия. Однако можно ли о чем-то судить по этой разнице - отражает ли она действительность или же это просто артефакт, связанный со слишком малым объемом выборки? Тот же вопрос (только еще острее) встает и в отношении экспериментальной группы, подверг­нутой воздействию независимой переменной. В этой группе стандартное отклонение для фона и после воздействия тоже различается примерно на 1 (3,14 и 4,04 соответственно). Однако здесь особенно велика разница между средними-15,2 и 11,3. На основании чего можно было бы утверждать, что эта разность средних действительно достоверна, т.е.-достаточно велика, чтобы можно было с уверенностью объяснить ее влиянием независимой переменной, а не простой случайностью? В какой степени можно опираться на эти результаты и распространять их на всю популяцию, из которой взята выборка, i. е. утверждать, что потребление марихуаны и в самом деле обычно ведет к нарушению глазодвигатель-ной координации?

На все эти вопросы и пытается дать ответ индуктивная статистика.

Статистика и обработка данных 295







Дата добавления: 2015-04-16; просмотров: 433. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия