Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Оценка разброса





Как мы уже отмечали, характер распределения результатов после воздействия изучаемого фактора в опытной группе дает существенную информацию о том, как испытуемые выполняли задание. Сказанное относится и к обоим распределениям в контрольной группе:

Контрольная группа Мода (Мо) Медиана (Me) Средняя М\)

Ф°":....................................

После воздействия:....................................

8 9 10 11 12 1314 1516 171819 2021 22232425 После воздействия

Сразу бросается в глаза, что если средняя в обоих случаях почти одинакова, то во втором распределении результаты больше разбросаны, чем в первом. В таких случаях говорят, что у второго распределения больше диапазон, или размах вариаций, т. е. разница между максималь­ным и минимальным значениями.

Так, если взять контрольную группу, то диапазон распределения для фона составит 22 — 10 = 12, а после воздействия 25 — 8 = 17. Это позво­ляет предположить, что повторное выполнение задачи на глазодвига-тельную координацию оказало на испытуемых из контрольной группы определенное влияние: у одних показатели улучшились, у других ухуд­шились1. Однако для количественной оценки разброса результатов

' Здесь мог проявиться зффект п.шцебо, связанный с тем. что запах дыма травы вызвал у испытуемых уверенность в том, что они находятся под воз­действием наркотика. Для проверки этого предположения следовало бы повто­рить эксперимент со второй контрольной группой, в которой испытуемым будуг 1;|вать только обычную сигарету.

относительно средней в том или ином распределении существуют более точные методы, чем измерение диапазона.

Чаще всего для оценки разброса определяют отклонение каждого из полученных значений от средней (М-М), обозначаемое буквой d, а затем вычисляют среднюю арифметическую всех этих отклонений. Чем она больше, тем больше разброс данных и тем более разнородна выборка. Напротив, если эта средняя невелика, то данные больше сконцентриро­ваны относительно их среднего значения и выборка более однородна.

Итак, первый показатель, используемый для оценки разброса,-это среднее отклонение. Его вычисляют следующим образом (пример, кото­рый мы здесь приведем, не имеет ничего общего с нашим гипотетиче­ским экспериментом). Собрав все данные и расположив их в ряд

356911 14, находят среднюю арифметическую для выборки:

3+5+6+9+11+14 48

__————^———————=^=8.

Затем вычисляют отклонения каждого значения от средней и сумми­руют их:

-5 -3 -2 +1 +3 +6 (3 - 8) + (5 - 8) + (6 - 8) + (9 - 8) + (11 - 8) + (14 - 8).

Однако при таком сложении отрицательные и положительные отклоне­ния будут уничтожать друг друга, иногда даже полностью, так что результат (как в данном примере) может оказаться равным нулю. Из этого ясно, что нужно находить сумму абсолютных значений индиви­дуальных отклонений и уже эту сумму делить на их общее число. При этом получится следующий результат:

среднее отклонение равно 53213 |3-8|+|5-8[+|6-8|+|9-8|+|11 -8|+ 14^8! 20 ззз
  б 33'3-

 

Общая формула:

 

2^| п

Среднее отклонение =

где Т. (сигма) означает сумму; | d\ - абсолютное значение каждого инди­видуального отклонения от средней; и-число данных.

Однако абсолютными значениями довольно трудно оперировать в алгебраических формулах, используемых в более сложном статистиче­ском анализе. Поэтому статистики решили пойти по «обходному пути», позволяющему отказаться от значений с отрицательным знаком, а имен­но возводить все значения в квадрат, а затем делить сумму квадратов на

Приложение Б

число данных. В нашем примере это выглядит следующим образом:

(_5)2 + (-З)2 + (-2)2 + (+1)2 + (+3)2 + (+6)2 _

6 _25+9+4+1+9+36_84_

6 - 6 ~ '

В результате такого расчета получают так называемую вариансу1 Формула для вычисления вариансы, таким образом, следующая:

Варианса -=•

Наконец, чтобы получить показатель, сопоставимый по величине со средним отклонением, статистики решили извлекать из вариансы квад­ратный корень. При этом получается так называемое стандартное отклонение:

Стандартное отклонение =

В нашем примере стандартное отклонение равно ^14 = 3,74.

Следует еще добавить, что для того, чтобы более точно оценить стандартное отклонение для малых выборок (с числом элементов менее 30), в знаменателе выражения под корнем надо использовать не п, an—I:

Вернемся теперь к нашему эксперименту и посмотрим, насколько полезен оказывается этот показатель для описания выборок.

На первом этапе, разумеется, необходимо вычислить стандартное

* Варианса представляет собой один из показателей разброса, используемых в гекоторых статистических методиках (например, при вычислении критерия F,<.м. следующий раздел). Следует отметить, что в отечественной литературе вариансу часто называют дисперсией. -Прим. перед.

* Стандартное отклонение для популяции обозначается маленькой греческой буквой сигм! (ст), а для выборки - буквой s. Это касается и вариансы, т.е кзадрага стандартного отклонения, для популяции она обозначается ет2, а для выборки s2.

Статистика и обработка данных

отклонение для всех четырех распределений. Сделаем это сначала для фона опытной группы:







Дата добавления: 2015-04-16; просмотров: 399. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия