Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Проверка значимости коэффициентов регрессии





Для оценки значимости коэффициентов регрессии используется критерий Стьюдента (он относится к t – распределению и характеризует отклонение среднего значения частичной совокупности от среднего значения нормальной общей совокупности). Его расчетное значение определяется по следующей формуле:

(12)

где bi – коэффициент регрессии;

S{bi} – среднее квадратическое отклонение коэффициентов регрессии.

Для определения дисперсии коэффициентов регрессии используются следующие формулы:

(13)
(14)
(15)
(16)

где S2{Y} – дисперсия воспроизводимости, которая определяется по следующей формуле:

(17)

где – среднеквадратичная дисперсия выходного параметра.

Среднеквадратичная дисперсия характеризует средний разброс значений выходного параметра относительно его средних значений при каждом уровне факторов, т.е. ошибку опытов в эксперименте.

(18)

где m – число повторностей в опыте матрицы;

N – число опытов в матрице;

– дисперсии выходного параметра, рассчитанные по формуле (7).

Расчетное значение критерия Стьюдента сравнивается с табличным tT, которое находим по приложению В, при условии что доверительная вероятность PD = 0,95 и число степеней свободы , т.е. tT [PD = 0,95, f=9(3-1)=18]=2,101.

Если tR > tT, то полученные коэффициенты значимы, и, следовательно, связь между Y и X значима и мы не можем их исключить из математической модели.

Незначимость (tR < tT) может быть обусловлена малым интервалом варьирования фактора, большой дисперсией воспроизводимости вследствие наличия неуправляемых и неконтролируемых факторов, а также расположением основного уровня фактора (Х0j) близко к точке частного экстремума Y по этому фактору.

После исключения не значимых коэффициентов регрессии из математической модели необходимо записать её окончательный вид.

 







Дата добавления: 2015-04-16; просмотров: 452. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия